Network Analysis of the iNaturalist Citizen Science Community
- URL: http://arxiv.org/abs/2310.10693v1
- Date: Mon, 16 Oct 2023 00:41:13 GMT
- Title: Network Analysis of the iNaturalist Citizen Science Community
- Authors: Yu Lu Liu and Thomas Jiralerspong
- Abstract summary: We use the iNaturalist citizen science platform as a case study to analyze the structure of citizen science projects.
We propose a novel unique benchmark for network science research by using the iNaturalist data to create a network which has an unusual structure relative to other common benchmark networks.
- Score: 0.6118897979046375
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, citizen science has become a larger and larger part of the
scientific community. Its ability to crowd source data and expertise from
thousands of citizen scientists makes it invaluable. Despite the field's
growing popularity, the interactions and structure of citizen science projects
are still poorly understood and under analyzed. We use the iNaturalist citizen
science platform as a case study to analyze the structure of citizen science
projects. We frame the data from iNaturalist as a bipartite network and use
visualizations as well as established network science techniques to gain
insights into the structure and interactions between users in citizen science
projects. Finally, we propose a novel unique benchmark for network science
research by using the iNaturalist data to create a network which has an unusual
structure relative to other common benchmark networks. We demonstrate using a
link prediction task that this network can be used to gain novel insights into
a variety of network science methods.
Related papers
- Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation [58.064940977804596]
A plethora of new AI models and tools has been proposed, promising to empower researchers and academics worldwide to conduct their research more effectively and efficiently.
Ethical concerns regarding shortcomings of these tools and potential for misuse take a particularly prominent place in our discussion.
arXiv Detail & Related papers (2025-02-07T18:26:45Z) - Large Language Models: New Opportunities for Access to Science [0.0]
The uptake of Retrieval Augmented Generation-enhanced chat applications in the construction of the open science environment of the KM3NeT neutrino detectors serves as a focus point to explore and exemplify prospects for the wider application of Large Language Models for our science.
arXiv Detail & Related papers (2025-01-13T11:58:27Z) - Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks in
Scientific Computing [0.0]
Recent breakthroughs in computing power have made it feasible to use machine learning and deep learning to advance scientific computing.
Due to their intrinsic architecture, conventional neural networks cannot be successfully trained and scoped when data is sparse.
Neural networks offer a strong foundation to digest physical-driven or knowledge-based constraints.
arXiv Detail & Related papers (2022-11-14T15:44:07Z) - Modeling Information Change in Science Communication with Semantically
Matched Paraphrases [50.67030449927206]
SPICED is the first paraphrase dataset of scientific findings annotated for degree of information change.
SPICED contains 6,000 scientific finding pairs extracted from news stories, social media discussions, and full texts of original papers.
Models trained on SPICED improve downstream performance on evidence retrieval for fact checking of real-world scientific claims.
arXiv Detail & Related papers (2022-10-24T07:44:38Z) - KnowledgeShovel: An AI-in-the-Loop Document Annotation System for
Scientific Knowledge Base Construction [46.56643271476249]
KnowledgeShovel is an Al-in-the-Loop document annotation system for researchers to construct scientific knowledge bases.
The design of KnowledgeShovel introduces a multi-step multi-modalAI collaboration pipeline to improve data accuracy while reducing the human burden.
A follow-up user evaluation with 7 geoscience researchers shows that KnowledgeShovel can enable efficient construction of scientific knowledge bases with satisfactory accuracy.
arXiv Detail & Related papers (2022-10-06T11:38:18Z) - A Computational Inflection for Scientific Discovery [48.176406062568674]
We stand at the foot of a significant inflection in the trajectory of scientific discovery.
As society continues on its fast-paced digital transformation, so does humankind's collective scientific knowledge.
Computer science is poised to ignite a revolution in the scientific process itself.
arXiv Detail & Related papers (2022-05-04T11:36:54Z) - Semantic and Relational Spaces in Science of Science: Deep Learning
Models for Article Vectorisation [4.178929174617172]
We focus on document-level embeddings based on the semantic and relational aspects of articles, using Natural Language Processing (NLP) and Graph Neural Networks (GNNs)
Our results show that using NLP we can encode a semantic space of articles, while with GNN we are able to build a relational space where the social practices of a research community are also encoded.
arXiv Detail & Related papers (2020-11-05T14:57:41Z) - NAS-Navigator: Visual Steering for Explainable One-Shot Deep Neural
Network Synthesis [53.106414896248246]
We present a framework that allows analysts to effectively build the solution sub-graph space and guide the network search by injecting their domain knowledge.
Applying this technique in an iterative manner allows analysts to converge to the best performing neural network architecture for a given application.
arXiv Detail & Related papers (2020-09-28T01:48:45Z) - The Right Tools for the Job: The Case for Spatial Science Tool-Building [0.0]
This paper presents the 8th annual Transactions in GIS plenary address at the American Association of Geographers annual meeting in Washington, DC.
It discusses the motivation, experience, and outcomes of developing OSMnx, a tool intended to help address this.
The paper concludes with paths forward, emphasizing open-source software and reusable computational data science.
arXiv Detail & Related papers (2020-08-12T20:15:39Z) - Deep Learning for Community Detection: Progress, Challenges and
Opportunities [79.26787486888549]
Article summarizes the contributions of the various frameworks, models, and algorithms in deep neural networks.
This article summarizes the contributions of the various frameworks, models, and algorithms in deep neural networks.
arXiv Detail & Related papers (2020-05-17T11:22:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.