A Local Graph Limits Perspective on Sampling-Based GNNs
- URL: http://arxiv.org/abs/2310.10953v1
- Date: Tue, 17 Oct 2023 02:58:49 GMT
- Title: A Local Graph Limits Perspective on Sampling-Based GNNs
- Authors: Yeganeh Alimohammadi, Luana Ruiz, Amin Saberi
- Abstract summary: We propose a theoretical framework for training Graph Neural Networks (GNNs) on large input graphs via training on small, fixed-size sampled subgraphs.
We prove that parameters learned from training sampling-based GNNs on small samples of a large input graph are within an $epsilon$-neighborhood of the outcome of training the same architecture on the whole graph.
- Score: 7.601210044390688
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a theoretical framework for training Graph Neural Networks (GNNs)
on large input graphs via training on small, fixed-size sampled subgraphs. This
framework is applicable to a wide range of models, including popular
sampling-based GNNs, such as GraphSAGE and FastGCN. Leveraging the theory of
graph local limits, we prove that, under mild assumptions, parameters learned
from training sampling-based GNNs on small samples of a large input graph are
within an $\epsilon$-neighborhood of the outcome of training the same
architecture on the whole graph. We derive bounds on the number of samples, the
size of the graph, and the training steps required as a function of $\epsilon$.
Our results give a novel theoretical understanding for using sampling in
training GNNs. They also suggest that by training GNNs on small samples of the
input graph, practitioners can identify and select the best models,
hyperparameters, and sampling algorithms more efficiently. We empirically
illustrate our results on a node classification task on large citation graphs,
observing that sampling-based GNNs trained on local subgraphs 12$\times$
smaller than the original graph achieve comparable performance to those trained
on the input graph.
Related papers
- Stealing Training Graphs from Graph Neural Networks [54.52392250297907]
Graph Neural Networks (GNNs) have shown promising results in modeling graphs in various tasks.
As neural networks can memorize the training samples, the model parameters of GNNs have a high risk of leaking private training data.
We investigate a novel problem of stealing graphs from trained GNNs.
arXiv Detail & Related papers (2024-11-17T23:15:36Z) - Graph Structure Prompt Learning: A Novel Methodology to Improve Performance of Graph Neural Networks [13.655670509818144]
We propose a novel Graph structure Prompt Learning method (GPL) to enhance the training of Graph networks (GNNs)
GPL employs task-independent graph structure losses to encourage GNNs to learn intrinsic graph characteristics while simultaneously solving downstream tasks.
In experiments on eleven real-world datasets, after being trained by neural prediction, GNNs significantly outperform their original performance on node classification, graph classification, and edge tasks.
arXiv Detail & Related papers (2024-07-16T03:59:18Z) - Sketch-GNN: Scalable Graph Neural Networks with Sublinear Training Complexity [30.2972965458946]
Graph Networks (GNNs) are widely applied to graph learning problems such as node classification.
When scaling up the underlying graphs of GNNs to a larger size, we are forced to either train on the complete graph or keep the full graph adjacency and node embeddings in memory.
This paper proposes a sketch-based algorithm whose training time and memory grow sublinearly with respect to graph size.
arXiv Detail & Related papers (2024-06-21T18:22:11Z) - GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels [81.93520935479984]
We study a new problem, GNN model evaluation, that aims to assess the performance of a specific GNN model trained on labeled and observed graphs.
We propose a two-stage GNN model evaluation framework, including (1) DiscGraph set construction and (2) GNNEvaluator training and inference.
Under the effective training supervision from the DiscGraph set, GNNEvaluator learns to precisely estimate node classification accuracy of the to-be-evaluated GNN model.
arXiv Detail & Related papers (2023-10-23T05:51:59Z) - GRAPES: Learning to Sample Graphs for Scalable Graph Neural Networks [2.4175455407547015]
Graph neural networks learn to represent nodes by aggregating information from their neighbors.
Several existing methods address this by sampling a small subset of nodes, scaling GNNs to much larger graphs.
We introduce GRAPES, an adaptive sampling method that learns to identify the set of nodes crucial for training a GNN.
arXiv Detail & Related papers (2023-10-05T09:08:47Z) - Similarity-aware Positive Instance Sampling for Graph Contrastive
Pre-training [82.68805025636165]
We propose to select positive graph instances directly from existing graphs in the training set.
Our selection is based on certain domain-specific pair-wise similarity measurements.
Besides, we develop an adaptive node-level pre-training method to dynamically mask nodes to distribute them evenly in the graph.
arXiv Detail & Related papers (2022-06-23T20:12:51Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
We consider the problem of learning a graphon neural network (WNN) by training GNNs on graphs sampled Bernoulli from the graphon.
Inspired by these results, we propose an algorithm to learn GNNs on large-scale graphs that, starting from a moderate number of nodes, successively increases the size of the graph during training.
arXiv Detail & Related papers (2021-06-07T15:05:59Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
Graphs neural networks (GNNs) learn node features by aggregating and combining neighbor information.
GNNs are mostly treated as black-boxes and lack human intelligible explanations.
We propose a novel approach, known as XGNN, to interpret GNNs at the model-level.
arXiv Detail & Related papers (2020-06-03T23:52:43Z) - Ripple Walk Training: A Subgraph-based training framework for Large and
Deep Graph Neural Network [10.36962234388739]
We propose a general subgraph-based training framework, namely Ripple Walk Training (RWT), for deep and large graph neural networks.
RWT samples subgraphs from the full graph to constitute a mini-batch, and the full GNN is updated based on the mini-batch gradient.
Extensive experiments on different sizes of graphs demonstrate the effectiveness and efficiency of RWT in training various GNNs.
arXiv Detail & Related papers (2020-02-17T19:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.