The Quo Vadis of the Relationship between Language and Large Language
Models
- URL: http://arxiv.org/abs/2310.11146v1
- Date: Tue, 17 Oct 2023 10:54:24 GMT
- Title: The Quo Vadis of the Relationship between Language and Large Language
Models
- Authors: Evelina Leivada, Vittoria Dentella, Elliot Murphy
- Abstract summary: Large Language Models (LLMs) have come to encourage the adoption of LLMs as scientific models of language.
We identify the most important theoretical and empirical risks brought about by the adoption of scientific models that lack transparency.
We conclude that, at their current stage of development, LLMs hardly offer any explanations for language.
- Score: 3.10770247120758
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the field of Artificial (General) Intelligence (AI), the several recent
advancements in Natural language processing (NLP) activities relying on Large
Language Models (LLMs) have come to encourage the adoption of LLMs as
scientific models of language. While the terminology employed for the
characterization of LLMs favors their embracing as such, it is not clear that
they are in a place to offer insights into the target system they seek to
represent. After identifying the most important theoretical and empirical risks
brought about by the adoption of scientific models that lack transparency, we
discuss LLMs relating them to every scientific model's fundamental components:
the object, the medium, the meaning and the user. We conclude that, at their
current stage of development, LLMs hardly offer any explanations for language,
and then we provide an outlook for more informative future research directions
on this topic.
Related papers
- Large Models of What? Mistaking Engineering Achievements for Human Linguistic Agency [0.11510009152620666]
We argue that claims regarding linguistic capabilities of Large Language Models (LLMs) are based on at least two unfounded assumptions.
Language completeness assumes that a distinct and complete thing such as a natural language' exists.
The assumption of data completeness relies on the belief that a language can be quantified and wholly captured by data.
arXiv Detail & Related papers (2024-07-11T18:06:01Z) - A Survey on Large Language Models with Multilingualism: Recent Advances and New Frontiers [48.314619377988436]
The rapid development of Large Language Models (LLMs) demonstrates remarkable multilingual capabilities in natural language processing.
Despite the breakthroughs of LLMs, the investigation into the multilingual scenario remains insufficient.
This survey aims to help the research community address multilingual problems and provide a comprehensive understanding of the core concepts, key techniques, and latest developments in multilingual natural language processing based on LLMs.
arXiv Detail & Related papers (2024-05-17T17:47:39Z) - A Survey on Multilingual Large Language Models: Corpora, Alignment, and Bias [5.104497013562654]
We present an overview of MLLMs, covering their evolution, key techniques, and multilingual capacities.
We explore widely utilized multilingual corpora for MLLMs' training and multilingual datasets oriented for downstream tasks.
We discuss bias on MLLMs including its category and evaluation metrics, and summarize the existing debiasing techniques.
arXiv Detail & Related papers (2024-04-01T05:13:56Z) - Language-Specific Neurons: The Key to Multilingual Capabilities in Large Language Models [117.20416338476856]
Large language models (LLMs) demonstrate remarkable multilingual capabilities without being pre-trained on specially curated multilingual parallel corpora.
We propose a novel detection method, language activation probability entropy (LAPE), to identify language-specific neurons within LLMs.
Our findings indicate that LLMs' proficiency in processing a particular language is predominantly due to a small subset of neurons.
arXiv Detail & Related papers (2024-02-26T09:36:05Z) - History, Development, and Principles of Large Language Models-An Introductory Survey [15.875687167037206]
Language models serve as a cornerstone in natural language processing (NLP)
Over extensive research spanning decades, language modeling has progressed from initial statistical language models (SLMs) to the contemporary landscape of large language models (LLMs)
arXiv Detail & Related papers (2024-02-10T01:18:15Z) - From Understanding to Utilization: A Survey on Explainability for Large
Language Models [27.295767173801426]
This survey underscores the imperative for increased explainability in Large Language Models (LLMs)
Our focus is primarily on pre-trained Transformer-based LLMs, which pose distinctive interpretability challenges due to their scale and complexity.
When considering the utilization of explainability, we explore several compelling methods that concentrate on model editing, control generation, and model enhancement.
arXiv Detail & Related papers (2024-01-23T16:09:53Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - Let Models Speak Ciphers: Multiagent Debate through Embeddings [84.20336971784495]
We introduce CIPHER (Communicative Inter-Model Protocol Through Embedding Representation) to address this issue.
By deviating from natural language, CIPHER offers an advantage of encoding a broader spectrum of information without any modification to the model weights.
This showcases the superiority and robustness of embeddings as an alternative "language" for communication among LLMs.
arXiv Detail & Related papers (2023-10-10T03:06:38Z) - Limits for Learning with Language Models [4.20859414811553]
We show that large language models (LLMs) are unable to learn concepts beyond the first level of the Borel Hierarchy.
LLMs will continue to operate without formal guarantees on tasks that require entailments and deep linguistic understanding.
arXiv Detail & Related papers (2023-06-21T12:11:31Z) - A Survey of Large Language Models [81.06947636926638]
Language modeling has been widely studied for language understanding and generation in the past two decades.
Recently, pre-trained language models (PLMs) have been proposed by pre-training Transformer models over large-scale corpora.
To discriminate the difference in parameter scale, the research community has coined the term large language models (LLM) for the PLMs of significant size.
arXiv Detail & Related papers (2023-03-31T17:28:46Z) - Shortcut Learning of Large Language Models in Natural Language
Understanding [119.45683008451698]
Large language models (LLMs) have achieved state-of-the-art performance on a series of natural language understanding tasks.
They might rely on dataset bias and artifacts as shortcuts for prediction.
This has significantly affected their generalizability and adversarial robustness.
arXiv Detail & Related papers (2022-08-25T03:51:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.