Innovative Methods for Non-Destructive Inspection of Handwritten
Documents
- URL: http://arxiv.org/abs/2310.11217v2
- Date: Fri, 12 Jan 2024 19:28:15 GMT
- Title: Innovative Methods for Non-Destructive Inspection of Handwritten
Documents
- Authors: Eleonora Breci (1), Luca Guarnera (1), Sebastiano Battiato (1) ((1)
University of Catania)
- Abstract summary: We present a framework capable of extracting and analyzing intrinsic measures of manuscript documents using image processing and deep learning techniques.
By quantifying the Euclidean distance between the feature vectors of the documents to be compared, authorship can be discerned.
Experimental results demonstrate the ability of our method to objectively determine authorship in different writing media, outperforming the state of the art.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Handwritten document analysis is an area of forensic science, with the goal
of establishing authorship of documents through examination of inherent
characteristics. Law enforcement agencies use standard protocols based on
manual processing of handwritten documents. This method is time-consuming, is
often subjective in its evaluation, and is not replicable. To overcome these
limitations, in this paper we present a framework capable of extracting and
analyzing intrinsic measures of manuscript documents related to text line
heights, space between words, and character sizes using image processing and
deep learning techniques. The final feature vector for each document involved
consists of the mean and standard deviation for every type of measure
collected. By quantifying the Euclidean distance between the feature vectors of
the documents to be compared, authorship can be discerned. Our study pioneered
the comparison between traditionally handwritten documents and those produced
with digital tools (e.g., tablets). Experimental results demonstrate the
ability of our method to objectively determine authorship in different writing
media, outperforming the state of the art.
Related papers
- Contextual Document Embeddings [77.22328616983417]
We propose two complementary methods for contextualized document embeddings.
First, an alternative contrastive learning objective that explicitly incorporates the document neighbors into the intra-batch contextual loss.
Second, a new contextual architecture that explicitly encodes neighbor document information into the encoded representation.
arXiv Detail & Related papers (2024-10-03T14:33:34Z) - A Novel Dataset for Non-Destructive Inspection of Handwritten Documents [0.0]
Forensic handwriting examination aims to examine handwritten documents in order to properly define or hypothesize the manuscript's author.
We propose a new and challenging dataset consisting of two subsets: the first consists of 21 documents written either by the classic pen and paper" approach (and later digitized) and directly acquired on common devices such as tablets.
Preliminary results on the proposed datasets show that 90% classification accuracy can be achieved on the first subset.
arXiv Detail & Related papers (2024-01-09T09:25:58Z) - PART: Pre-trained Authorship Representation Transformer [64.78260098263489]
Authors writing documents imprint identifying information within their texts: vocabulary, registry, punctuation, misspellings, or even emoji usage.
Previous works use hand-crafted features or classification tasks to train their authorship models, leading to poor performance on out-of-domain authors.
We propose a contrastively trained model fit to learn textbfauthorship embeddings instead of semantics.
arXiv Detail & Related papers (2022-09-30T11:08:39Z) - Open Set Classification of Untranscribed Handwritten Documents [56.0167902098419]
Huge amounts of digital page images of important manuscripts are preserved in archives worldwide.
The class or typology'' of a document is perhaps the most important tag to be included in the metadata.
The technical problem is one of automatic classification of documents, each consisting of a set of untranscribed handwritten text images.
arXiv Detail & Related papers (2022-06-20T20:43:50Z) - Specialized Document Embeddings for Aspect-based Similarity of Research
Papers [4.661692753666685]
We treat aspect-based similarity as a classical vector similarity problem in aspect-specific embedding spaces.
We represent a document not as a single generic embedding but as multiple specialized embeddings.
Our approach mitigates potential risks arising from implicit biases by making them explicit.
arXiv Detail & Related papers (2022-03-28T07:35:26Z) - Handwriting Classification for the Analysis of Art-Historical Documents [6.918282834668529]
We focus on the analysis of handwriting in scanned documents from the art-historic archive of the WPI.
We propose a handwriting classification model that labels extracted text fragments based on their visual structure.
arXiv Detail & Related papers (2020-11-04T13:06:46Z) - Neural Deepfake Detection with Factual Structure of Text [78.30080218908849]
We propose a graph-based model for deepfake detection of text.
Our approach represents the factual structure of a given document as an entity graph.
Our model can distinguish the difference in the factual structure between machine-generated text and human-written text.
arXiv Detail & Related papers (2020-10-15T02:35:31Z) - Multilevel Text Alignment with Cross-Document Attention [59.76351805607481]
Existing alignment methods operate at a single, predefined level.
We propose a new learning approach that equips previously established hierarchical attention encoders for representing documents with a cross-document attention component.
arXiv Detail & Related papers (2020-10-03T02:52:28Z) - Fast(er) Reconstruction of Shredded Text Documents via Self-Supervised
Deep Asymmetric Metric Learning [62.34197797857823]
A central problem in automatic reconstruction of shredded documents is the pairwise compatibility evaluation of the shreds.
This work proposes a scalable deep learning approach for measuring pairwise compatibility in which the number of inferences scales linearly.
Our method has accuracy comparable to the state-of-the-art with a speed-up of about 22 times for a test instance with 505 shreds.
arXiv Detail & Related papers (2020-03-23T03:22:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.