A voxel-level approach to brain age prediction: A method to assess regional brain aging
- URL: http://arxiv.org/abs/2310.11385v2
- Date: Wed, 24 Apr 2024 22:35:02 GMT
- Title: A voxel-level approach to brain age prediction: A method to assess regional brain aging
- Authors: Neha Gianchandani, Mahsa Dibaji, Johanna Ospel, Fernando Vega, Mariana Bento, M. Ethan MacDonald, Roberto Souza,
- Abstract summary: Voxel-level predictions can provide localized brain age estimates that can provide granular insights into the regional aging processes.
Deep learning-based multitask model is proposed for voxel-level brain age prediction from T1-weighted magnetic resonance images.
- Score: 35.506876461932855
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Brain aging is a regional phenomenon, a facet that remains relatively under-explored within the realm of brain age prediction research using machine learning methods. Voxel-level predictions can provide localized brain age estimates that can provide granular insights into the regional aging processes. This is essential to understand the differences in aging trajectories in healthy versus diseased subjects. In this work, a deep learning-based multitask model is proposed for voxel-level brain age prediction from T1-weighted magnetic resonance images. The proposed model outperforms the models existing in the literature and yields valuable clinical insights when applied to both healthy and diseased populations. Regional analysis is performed on the voxel-level brain age predictions to understand aging trajectories of known anatomical regions in the brain and show that there exist disparities in regional aging trajectories of healthy subjects compared to ones with underlying neurological disorders such as Dementia and more specifically, Alzheimer's disease. Our code is available at https://github.com/nehagianchandani/Voxel-level-brain-age-prediction.
Related papers
- Dual Graph Attention based Disentanglement Multiple Instance Learning for Brain Age Estimation [24.548441213107566]
We propose a Dual Graph Attention based Disentanglement Multi-instance Learning (DGA-DMIL) framework for improving brain age estimation.
A dual graph attention aggregator is then proposed to learn the backbone features by exploiting the intra- and inter-instance relationships.
Our proposed model demonstrates exceptional accuracy in estimating brain age, achieving a remarkable mean absolute error of 2.12 years in the UK Biobank.
arXiv Detail & Related papers (2024-03-02T16:13:06Z) - Towards a Foundation Model for Brain Age Prediction using coVariance
Neural Networks [102.75954614946258]
Increasing brain age with respect to chronological age can reflect increased vulnerability to neurodegeneration and cognitive decline.
NeuroVNN is pre-trained as a regression model on healthy population to predict chronological age.
NeuroVNN adds anatomical interpretability to brain age and has a scale-free' characteristic that allows its transference to datasets curated according to any arbitrary brain atlas.
arXiv Detail & Related papers (2024-02-12T14:46:31Z) - Explainable Brain Age Prediction using coVariance Neural Networks [94.81523881951397]
We propose an explanation-driven and anatomically interpretable framework for brain age prediction using cortical thickness features.
Specifically, our brain age prediction framework extends beyond the coarse metric of brain age gap in Alzheimer's disease (AD)
We make two important observations: VNNs can assign anatomical interpretability to elevated brain age gap in AD by identifying contributing brain regions.
arXiv Detail & Related papers (2023-05-27T22:28:25Z) - Deep Learning for Brain Age Estimation: A Systematic Review [41.292656643344294]
Machine Learning models have been successfully employed on neuroimaging data for accurately predicting brain age.
Deep neural networks (also referred to as deep learning) have become prevalent in manifold neuroimaging studies.
arXiv Detail & Related papers (2022-12-07T15:19:59Z) - Brain Structural Saliency Over The Ages [0.41998444721319217]
We trained a ResNet model as a BA regressor on T1 structural MRI volumes from a small cross-sectional cohort of 524 individuals.
We show the change in attribution of relevance to different brain regions through the course of ageing.
Some regions increase in relevance with age; some decrease in relevance with age; and others are consistently relevant across ages.
arXiv Detail & Related papers (2022-01-12T09:50:29Z) - Voxel-level Importance Maps for Interpretable Brain Age Estimation [70.5330922395729]
We focus on the task of brain age regression from 3D brain Magnetic Resonance (MR) images using a Convolutional Neural Network, termed prediction model.
We implement a noise model which aims to add as much noise as possible to the input without harming the performance of the prediction model.
We test our method on 13,750 3D brain MR images from the UK Biobank, and our findings are consistent with the existing neuropathology literature.
arXiv Detail & Related papers (2021-08-11T18:08:09Z) - Brain Age Estimation From MRI Using Cascade Networks with Ranking Loss [75.03117866578913]
A novel 3D convolutional network, called two-stage-age-network (TSAN), is proposed to estimate brain age from T1-weighted MRI data.
Experiments with $6586$ MRIs showed that TSAN could provide accurate brain age estimation.
arXiv Detail & Related papers (2021-06-06T07:11:25Z) - Patch-based Brain Age Estimation from MR Images [64.66978138243083]
Brain age estimation from Magnetic Resonance Images (MRI) derives the difference between a subject's biological brain age and their chronological age.
Early detection of neurodegeneration manifesting as a higher brain age can potentially facilitate better medical care and planning for affected individuals.
We develop a new deep learning approach that uses 3D patches of the brain as well as convolutional neural networks (CNNs) to develop a localised brain age estimator.
arXiv Detail & Related papers (2020-08-29T11:50:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.