Automatic News Summerization
- URL: http://arxiv.org/abs/2310.11520v1
- Date: Tue, 17 Oct 2023 18:38:03 GMT
- Title: Automatic News Summerization
- Authors: Kavach Dheer and Arpit Dhankhar
- Abstract summary: The study employs the CNN-Daily Mail dataset, which consists of news articles and human-generated reference summaries.
The evaluation employs ROUGE scores to assess the efficacy and quality of generated summaries.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Natural Language Processing is booming with its applications in the real
world, one of which is Text Summarization for large texts including news
articles. This research paper provides an extensive comparative evaluation of
extractive and abstractive approaches for news text summarization, with an
emphasis on the ROUGE score analysis. The study employs the CNN-Daily Mail
dataset, which consists of news articles and human-generated reference
summaries. The evaluation employs ROUGE scores to assess the efficacy and
quality of generated summaries. After Evaluation, we integrate the
best-performing models on a web application to assess their real-world
capabilities and user experience.
Related papers
- Assessment of Transformer-Based Encoder-Decoder Model for Human-Like Summarization [0.05852077003870416]
This work leverages transformer-based BART model for human-like summarization.
On training and fine-tuning the encoder-decoder model, it is tested with diverse sample articles.
The finetuned model performance is compared with the baseline pretrained model.
Empirical results on BBC News articles highlight that the gold standard summaries written by humans are more factually consistent by 17%.
arXiv Detail & Related papers (2024-10-22T09:25:04Z) - Towards Enhancing Coherence in Extractive Summarization: Dataset and Experiments with LLMs [70.15262704746378]
We propose a systematically created human-annotated dataset consisting of coherent summaries for five publicly available datasets and natural language user feedback.
Preliminary experiments with Falcon-40B and Llama-2-13B show significant performance improvements (10% Rouge-L) in terms of producing coherent summaries.
arXiv Detail & Related papers (2024-07-05T20:25:04Z) - ACLSum: A New Dataset for Aspect-based Summarization of Scientific
Publications [10.529898520273063]
ACLSum is a novel summarization dataset carefully crafted and evaluated by domain experts.
In contrast to previous datasets, ACLSum facilitates multi-aspect summarization of scientific papers.
arXiv Detail & Related papers (2024-03-08T13:32:01Z) - Analysis of Multidomain Abstractive Summarization Using Salience
Allocation [2.6880540371111445]
Season is a model designed to enhance summarization by leveraging salience allocation techniques.
This paper employs various evaluation metrics such as ROUGE, METEOR, BERTScore, and MoverScore to evaluate the performance of these models fine-tuned for generating abstractive summaries.
arXiv Detail & Related papers (2024-02-19T08:52:12Z) - Exploring Precision and Recall to assess the quality and diversity of LLMs [82.21278402856079]
We introduce a novel evaluation framework for Large Language Models (LLMs) such as textscLlama-2 and textscMistral.
This approach allows for a nuanced assessment of the quality and diversity of generated text without the need for aligned corpora.
arXiv Detail & Related papers (2024-02-16T13:53:26Z) - Multi-Dimensional Evaluation of Text Summarization with In-Context
Learning [79.02280189976562]
In this paper, we study the efficacy of large language models as multi-dimensional evaluators using in-context learning.
Our experiments show that in-context learning-based evaluators are competitive with learned evaluation frameworks for the task of text summarization.
We then analyze the effects of factors such as the selection and number of in-context examples on performance.
arXiv Detail & Related papers (2023-06-01T23:27:49Z) - Large Language Models are Diverse Role-Players for Summarization
Evaluation [82.31575622685902]
A document summary's quality can be assessed by human annotators on various criteria, both objective ones like grammar and correctness, and subjective ones like informativeness, succinctness, and appeal.
Most of the automatic evaluation methods like BLUE/ROUGE may be not able to adequately capture the above dimensions.
We propose a new evaluation framework based on LLMs, which provides a comprehensive evaluation framework by comparing generated text and reference text from both objective and subjective aspects.
arXiv Detail & Related papers (2023-03-27T10:40:59Z) - Comparing Methods for Extractive Summarization of Call Centre Dialogue [77.34726150561087]
We experimentally compare several such methods by using them to produce summaries of calls, and evaluating these summaries objectively.
We found that TopicSum and Lead-N outperform the other summarisation methods, whilst BERTSum received comparatively lower scores in both subjective and objective evaluations.
arXiv Detail & Related papers (2022-09-06T13:16:02Z) - NEWTS: A Corpus for News Topic-Focused Summarization [9.872518517174498]
This paper introduces the first topical summarization corpus, based on the well-known CNN/Dailymail dataset.
We evaluate a range of existing techniques and analyze the effectiveness of different prompting methods.
arXiv Detail & Related papers (2022-05-31T10:01:38Z) - Topic Modeling Based Extractive Text Summarization [0.0]
We propose a novel method to summarize a text document by clustering its contents based on latent topics.
We utilize the lesser used and challenging WikiHow dataset in our approach to text summarization.
arXiv Detail & Related papers (2021-06-29T12:28:19Z) - SummEval: Re-evaluating Summarization Evaluation [169.622515287256]
We re-evaluate 14 automatic evaluation metrics in a comprehensive and consistent fashion.
We benchmark 23 recent summarization models using the aforementioned automatic evaluation metrics.
We assemble the largest collection of summaries generated by models trained on the CNN/DailyMail news dataset.
arXiv Detail & Related papers (2020-07-24T16:25:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.