Differentially Private Data Generation with Missing Data
- URL: http://arxiv.org/abs/2310.11548v2
- Date: Thu, 30 May 2024 19:38:24 GMT
- Title: Differentially Private Data Generation with Missing Data
- Authors: Shubhankar Mohapatra, Jianqiao Zong, Florian Kerschbaum, Xi He,
- Abstract summary: We formalize the problems of differential privacy (DP) synthetic data with missing values.
We propose three effective adaptive strategies that significantly improve the utility of the synthetic data.
Overall, this study contributes to a better understanding of the challenges and opportunities for using private synthetic data generation algorithms.
- Score: 25.242190235853595
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite several works that succeed in generating synthetic data with differential privacy (DP) guarantees, they are inadequate for generating high-quality synthetic data when the input data has missing values. In this work, we formalize the problems of DP synthetic data with missing values and propose three effective adaptive strategies that significantly improve the utility of the synthetic data on four real-world datasets with different types and levels of missing data and privacy requirements. We also identify the relationship between privacy impact for the complete ground truth data and incomplete data for these DP synthetic data generation algorithms. We model the missing mechanisms as a sampling process to obtain tighter upper bounds for the privacy guarantees to the ground truth data. Overall, this study contributes to a better understanding of the challenges and opportunities for using private synthetic data generation algorithms in the presence of missing data.
Related papers
- Leveraging Programmatically Generated Synthetic Data for Differentially Private Diffusion Training [4.815212947276105]
Programmatically generated synthetic data has been used in differential private training for classification to avoid privacy leakage.
The model trained with synthetic data generates unrealistic random images, raising challenges to adapt synthetic data for generative models.
We propose DPSynGen, which leverages generated synthetic data in diffusion models to address this challenge.
arXiv Detail & Related papers (2024-12-13T04:22:23Z) - Second FRCSyn-onGoing: Winning Solutions and Post-Challenge Analysis to Improve Face Recognition with Synthetic Data [104.30479583607918]
2nd FRCSyn-onGoing challenge is based on the 2nd Face Recognition Challenge in the Era of Synthetic Data (FRCSyn), originally launched at CVPR 2024.
We focus on exploring the use of synthetic data both individually and in combination with real data to solve current challenges in face recognition.
arXiv Detail & Related papers (2024-12-02T11:12:01Z) - Mitigating the Privacy Issues in Retrieval-Augmented Generation (RAG) via Pure Synthetic Data [51.41288763521186]
Retrieval-augmented generation (RAG) enhances the outputs of language models by integrating relevant information retrieved from external knowledge sources.
RAG systems may face severe privacy risks when retrieving private data.
We propose using synthetic data as a privacy-preserving alternative for the retrieval data.
arXiv Detail & Related papers (2024-06-20T22:53:09Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
The success of AI models relies on the availability of large, diverse, and high-quality datasets.
Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns.
arXiv Detail & Related papers (2024-04-11T06:34:17Z) - Scaling While Privacy Preserving: A Comprehensive Synthetic Tabular Data
Generation and Evaluation in Learning Analytics [0.412484724941528]
Privacy poses a significant obstacle to the progress of learning analytics (LA), presenting challenges like inadequate anonymization and data misuse.
Synthetic data emerges as a potential remedy, offering robust privacy protection.
Prior LA research on synthetic data lacks thorough evaluation, essential for assessing the delicate balance between privacy and data utility.
arXiv Detail & Related papers (2024-01-12T20:27:55Z) - Trading Off Scalability, Privacy, and Performance in Data Synthesis [11.698554876505446]
We introduce (a) the Howso engine, and (b) our proposed random projection based synthetic data generation framework.
We show that the synthetic data generated by Howso engine has good privacy and accuracy, which results the best overall score.
Our proposed random projection based framework can generate synthetic data with highest accuracy score, and has the fastest scalability.
arXiv Detail & Related papers (2023-12-09T02:04:25Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
Synthetic data serves as an alternative in training machine learning models.
ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper explores the potential of integrating data-centric AI techniques to guide the synthetic data generation process.
arXiv Detail & Related papers (2023-10-25T20:32:02Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
We show how the generative process affects the downstream ML task.
We introduce Deep Generative Ensemble (DGE) to approximate the posterior distribution over the generative process model parameters.
arXiv Detail & Related papers (2023-05-16T07:30:29Z) - Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic
Data [91.52783572568214]
Synthetic data may become a dominant force in the machine learning world, promising a future where datasets can be tailored to individual needs.
We discuss which fundamental challenges the community needs to overcome for wider relevance and application of synthetic data.
arXiv Detail & Related papers (2023-04-07T16:38:40Z) - PreFair: Privately Generating Justifiably Fair Synthetic Data [17.037575948075215]
PreFair is a system that allows for Differential Privacy (DP) fair synthetic data generation.
We adapt the notion of justifiable fairness to fit the synthetic data generation scenario.
arXiv Detail & Related papers (2022-12-20T15:01:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.