Language Agents for Detecting Implicit Stereotypes in Text-to-image
Models at Scale
- URL: http://arxiv.org/abs/2310.11778v3
- Date: Thu, 2 Nov 2023 10:46:41 GMT
- Title: Language Agents for Detecting Implicit Stereotypes in Text-to-image
Models at Scale
- Authors: Qichao Wang, Tian Bian, Yian Yin, Tingyang Xu, Hong Cheng, Helen M.
Meng, Zibin Zheng, Liang Chen, Bingzhe Wu
- Abstract summary: We introduce a novel agent architecture tailored for stereotype detection in text-to-image models.
We build the stereotype-relevant benchmark based on multiple open-text datasets.
We find that these models often display serious stereotypes when it comes to certain prompts about personal characteristics.
- Score: 45.64096601242646
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent surge in the research of diffusion models has accelerated the
adoption of text-to-image models in various Artificial Intelligence Generated
Content (AIGC) commercial products. While these exceptional AIGC products are
gaining increasing recognition and sparking enthusiasm among consumers, the
questions regarding whether, when, and how these models might unintentionally
reinforce existing societal stereotypes remain largely unaddressed. Motivated
by recent advancements in language agents, here we introduce a novel agent
architecture tailored for stereotype detection in text-to-image models. This
versatile agent architecture is capable of accommodating free-form detection
tasks and can autonomously invoke various tools to facilitate the entire
process, from generating corresponding instructions and images, to detecting
stereotypes. We build the stereotype-relevant benchmark based on multiple
open-text datasets, and apply this architecture to commercial products and
popular open source text-to-image models. We find that these models often
display serious stereotypes when it comes to certain prompts about personal
characteristics, social cultural context and crime-related aspects. In summary,
these empirical findings underscore the pervasive existence of stereotypes
across social dimensions, including gender, race, and religion, which not only
validate the effectiveness of our proposed approach, but also emphasize the
critical necessity of addressing potential ethical risks in the burgeoning
realm of AIGC. As AIGC continues its rapid expansion trajectory, with new
models and plugins emerging daily in staggering numbers, the challenge lies in
the timely detection and mitigation of potential biases within these models.
Related papers
- Civiverse: A Dataset for Analyzing User Engagement with Open-Source Text-to-Image Models [0.7209758868768352]
We analyze the Civiverse prompt dataset, encompassing millions of images and related metadata.
We focus on prompt analysis, specifically examining the semantic characteristics of text prompts.
Our findings reveal a predominant preference for generating explicit content, along with a focus on homogenization of semantic content.
arXiv Detail & Related papers (2024-08-10T21:41:03Z) - Detection of Machine-Generated Text: Literature Survey [0.0]
This literature survey aims to compile and synthesize accomplishments and developments in the field of machine-generated text.
It also gives an overview of machine-generated text trends and explores the larger societal implications.
arXiv Detail & Related papers (2024-01-02T01:44:15Z) - Towards Auditing Large Language Models: Improving Text-based Stereotype
Detection [5.3634450268516565]
This work introduces i) the Multi-Grain Stereotype dataset, which includes 52,751 instances of gender, race, profession and religion stereotypic text.
We design several experiments to rigorously test the proposed model trained on the novel dataset.
Experiments show that training the model in a multi-class setting can outperform the one-vs-all binary counterpart.
arXiv Detail & Related papers (2023-11-23T17:47:14Z) - RenAIssance: A Survey into AI Text-to-Image Generation in the Era of
Large Model [93.8067369210696]
Text-to-image generation (TTI) refers to the usage of models that could process text input and generate high fidelity images based on text descriptions.
Diffusion models are one prominent type of generative model used for the generation of images through the systematic introduction of noises with repeating steps.
In the era of large models, scaling up model size and the integration with large language models have further improved the performance of TTI models.
arXiv Detail & Related papers (2023-09-02T03:27:20Z) - BAGM: A Backdoor Attack for Manipulating Text-to-Image Generative Models [54.19289900203071]
The rise in popularity of text-to-image generative artificial intelligence has attracted widespread public interest.
We demonstrate that this technology can be attacked to generate content that subtly manipulates its users.
We propose a Backdoor Attack on text-to-image Generative Models (BAGM)
Our attack is the first to target three popular text-to-image generative models across three stages of the generative process.
arXiv Detail & Related papers (2023-07-31T08:34:24Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
Vision systems to see and reason about the compositional nature of visual scenes are fundamental to understanding our world.
The models learned to bridge the gap between such modalities coupled with large-scale training data facilitate contextual reasoning, generalization, and prompt capabilities at test time.
The output of such models can be modified through human-provided prompts without retraining, e.g., segmenting a particular object by providing a bounding box, having interactive dialogues by asking questions about an image or video scene or manipulating the robot's behavior through language instructions.
arXiv Detail & Related papers (2023-07-25T17:59:18Z) - Attend-and-Excite: Attention-Based Semantic Guidance for Text-to-Image
Diffusion Models [103.61066310897928]
Recent text-to-image generative models have demonstrated an unparalleled ability to generate diverse and creative imagery guided by a target text prompt.
While revolutionary, current state-of-the-art diffusion models may still fail in generating images that fully convey the semantics in the given text prompt.
We analyze the publicly available Stable Diffusion model and assess the existence of catastrophic neglect, where the model fails to generate one or more of the subjects from the input prompt.
We introduce the concept of Generative Semantic Nursing (GSN), where we seek to intervene in the generative process on the fly during inference time to improve the faithfulness
arXiv Detail & Related papers (2023-01-31T18:10:38Z) - Easily Accessible Text-to-Image Generation Amplifies Demographic
Stereotypes at Large Scale [61.555788332182395]
We investigate the potential for machine learning models to amplify dangerous and complex stereotypes.
We find a broad range of ordinary prompts produce stereotypes, including prompts simply mentioning traits, descriptors, occupations, or objects.
arXiv Detail & Related papers (2022-11-07T18:31:07Z) - Membership Inference Attacks Against Text-to-image Generation Models [23.39695974954703]
This paper performs the first privacy analysis of text-to-image generation models through the lens of membership inference.
We propose three key intuitions about membership information and design four attack methodologies accordingly.
All of the proposed attacks can achieve significant performance, in some cases even close to an accuracy of 1, and thus the corresponding risk is much more severe than that shown by existing membership inference attacks.
arXiv Detail & Related papers (2022-10-03T14:31:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.