Adversarial Training for Physics-Informed Neural Networks
- URL: http://arxiv.org/abs/2310.11789v1
- Date: Wed, 18 Oct 2023 08:28:43 GMT
- Title: Adversarial Training for Physics-Informed Neural Networks
- Authors: Yao Li, Shengzhu Shi, Zhichang Guo, Boying Wu
- Abstract summary: We propose an adversarial training strategy for PINNs termed by AT-PINNs.
AT-PINNs enhance the robustness of PINNs by fine-tuning the model with adversarial samples.
We implement AT-PINNs to the elliptic equation with multi-scale coefficients, Poisson equation with multi-peak solutions, Burgers equation with sharp solutions and the Allen-Cahn equation.
- Score: 4.446564162927513
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physics-informed neural networks have shown great promise in solving partial
differential equations. However, due to insufficient robustness, vanilla PINNs
often face challenges when solving complex PDEs, especially those involving
multi-scale behaviors or solutions with sharp or oscillatory characteristics.
To address these issues, based on the projected gradient descent adversarial
attack, we proposed an adversarial training strategy for PINNs termed by
AT-PINNs. AT-PINNs enhance the robustness of PINNs by fine-tuning the model
with adversarial samples, which can accurately identify model failure locations
and drive the model to focus on those regions during training. AT-PINNs can
also perform inference with temporal causality by selecting the initial
collocation points around temporal initial values. We implement AT-PINNs to the
elliptic equation with multi-scale coefficients, Poisson equation with
multi-peak solutions, Burgers equation with sharp solutions and the Allen-Cahn
equation. The results demonstrate that AT-PINNs can effectively locate and
reduce failure regions. Moreover, AT-PINNs are suitable for solving complex
PDEs, since locating failure regions through adversarial attacks is independent
of the size of failure regions or the complexity of the distribution.
Related papers
- RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
Physics-informed neural networks (PINNs) have been widely applied to solve partial differential equations (PDEs)
This paper proposes and theoretically studies a new training paradigm as region optimization.
A practical training algorithm, Region Optimized PINN (RoPINN), is seamlessly derived from this new paradigm.
arXiv Detail & Related papers (2024-05-23T09:45:57Z) - PINNsFormer: A Transformer-Based Framework For Physics-Informed Neural Networks [22.39904196850583]
Physics-Informed Neural Networks (PINNs) have emerged as a promising deep learning framework for approximating numerical solutions to partial differential equations (PDEs)
We introduce a novel Transformer-based framework, termed PINNsFormer, designed to address this limitation.
PINNsFormer achieves superior generalization ability and accuracy across various scenarios, including PINNs failure modes and high-dimensional PDEs.
arXiv Detail & Related papers (2023-07-21T18:06:27Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - A unified scalable framework for causal sweeping strategies for
Physics-Informed Neural Networks (PINNs) and their temporal decompositions [22.514769448363754]
Training challenges in PINNs and XPINNs for time-dependent PDEs are discussed.
We propose a new stacked-decomposition method that bridges the gap between PINNs and XPINNs.
We also formulate a new time-sweeping collocation point algorithm inspired by the previous PINNs causality.
arXiv Detail & Related papers (2023-02-28T01:19:21Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
In this work, we assess the ability of physics-informed neural networks (PINNs) to solve increasingly-complex coupled ordinary differential equations (ODEs)
We show that PINNs eventually fail to produce correct solutions to these benchmarks as their complexity increases.
We identify several reasons why this may be the case, including insufficient network capacity, poor conditioning of the ODEs, and high local curvature, as measured by the Laplacian of the PINN loss.
arXiv Detail & Related papers (2022-10-14T15:01:32Z) - Improved Training of Physics-Informed Neural Networks with Model
Ensembles [81.38804205212425]
We propose to expand the solution interval gradually to make the PINN converge to the correct solution.
All ensemble members converge to the same solution in the vicinity of observed data.
We show experimentally that the proposed method can improve the accuracy of the found solution.
arXiv Detail & Related papers (2022-04-11T14:05:34Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator.
The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families.
arXiv Detail & Related papers (2021-11-06T03:41:34Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z) - Optimal Transport Based Refinement of Physics-Informed Neural Networks [0.0]
We propose a refinement strategy to the well-known Physics-Informed Neural Networks (PINNs) for solving partial differential equations (PDEs) based on the concept of Optimal Transport (OT)
PINNs solvers have been found to suffer from a host of issues: spectral bias in fully-connected pathologies, unstable gradient, and difficulties with convergence and accuracy.
We present a novel training strategy for solving the Fokker-Planck-Kolmogorov Equation (FPKE) using OT-based sampling to supplement the existing PINNs framework.
arXiv Detail & Related papers (2021-05-26T02:51:20Z) - A nonlocal physics-informed deep learning framework using the
peridynamic differential operator [0.0]
We develop a nonlocal PINN approach using the Peridynamic Differential Operator (PDDO)---a numerical method which incorporates long-range interactions and removes spatial derivatives in the governing equations.
Because the PDDO functions can be readily incorporated in the neural network architecture, the nonlocality does not degrade the performance of modern deep-learning algorithms.
We document the superior behavior of nonlocal PINN with respect to local PINN in both solution accuracy and parameter inference.
arXiv Detail & Related papers (2020-05-31T06:26:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.