CLARA: Multilingual Contrastive Learning for Audio Representation
Acquisition
- URL: http://arxiv.org/abs/2310.11830v2
- Date: Wed, 1 Nov 2023 11:38:40 GMT
- Title: CLARA: Multilingual Contrastive Learning for Audio Representation
Acquisition
- Authors: Kari A Noriy, Xiaosong Yang, Marcin Budka and Jian Jun Zhang
- Abstract summary: CLARA minimizes reliance on labelled data, enhancing generalization across languages.
Our approach adeptly captures emotional nuances in speech, overcoming subjective assessment issues.
It adapts to low-resource languages, marking progress in multilingual speech representation learning.
- Score: 5.520654376217889
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multilingual speech processing requires understanding emotions, a task made
difficult by limited labelled data. CLARA, minimizes reliance on labelled data,
enhancing generalization across languages. It excels at fostering shared
representations, aiding cross-lingual transfer of speech and emotions, even
with little data. Our approach adeptly captures emotional nuances in speech,
overcoming subjective assessment issues. Using a large multilingual audio
corpus and self-supervised learning, CLARA develops speech representations
enriched with emotions, advancing emotion-aware multilingual speech processing.
Our method expands the data range using data augmentation, textual embedding
for visual understanding, and transfers knowledge from high- to low-resource
languages. CLARA demonstrates excellent performance in emotion recognition,
language comprehension, and audio benchmarks, excelling in zero-shot and
few-shot learning. It adapts to low-resource languages, marking progress in
multilingual speech representation learning.
Related papers
- Improving Speech Emotion Recognition in Under-Resourced Languages via Speech-to-Speech Translation with Bootstrapping Data Selection [49.27067541740956]
Speech Emotion Recognition (SER) is a crucial component in developing general-purpose AI agents capable of natural human-computer interaction.
Building robust multilingual SER systems remains challenging due to the scarcity of labeled data in languages other than English and Chinese.
We propose an approach to enhance SER performance in low SER resource languages by leveraging data from high-resource languages.
arXiv Detail & Related papers (2024-09-17T08:36:45Z) - Enhancing expressivity transfer in textless speech-to-speech translation [0.0]
Existing state-of-the-art systems fall short when it comes to capturing and transferring expressivity accurately across different languages.
This study presents a novel method that operates at the discrete speech unit level and leverages multilingual emotion embeddings.
We demonstrate how these embeddings can be used to effectively predict the pitch and duration of speech units in the target language.
arXiv Detail & Related papers (2023-10-11T08:07:22Z) - Scaling Speech Technology to 1,000+ Languages [66.31120979098483]
The Massively Multilingual Speech (MMS) project increases the number of supported languages by 10-40x, depending on the task.
Main ingredients are a new dataset based on readings of publicly available religious texts.
We built pre-trained wav2vec 2.0 models covering 1,406 languages, a single multilingual automatic speech recognition model for 1,107 languages, speech synthesis models for the same number of languages, and a language identification model for 4,017 languages.
arXiv Detail & Related papers (2023-05-22T22:09:41Z) - Learning Cross-lingual Visual Speech Representations [108.68531445641769]
Cross-lingual self-supervised visual representation learning has been a growing research topic in the last few years.
We use the recently-proposed Raw Audio-Visual Speechs (RAVEn) framework to pre-train an audio-visual model with unlabelled data.
Our experiments show that: (1) multi-lingual models with more data outperform monolingual ones, but, when keeping the amount of data fixed, monolingual models tend to reach better performance.
arXiv Detail & Related papers (2023-03-14T17:05:08Z) - Bridging the Gap: Using Deep Acoustic Representations to Learn Grounded
Language from Percepts and Raw Speech [26.076534338576234]
Learning to understand grounded language, which connects natural language to percepts, is a critical research area.
In this work we demonstrate the feasibility of performing grounded language acquisition on paired visual percepts and raw speech inputs.
arXiv Detail & Related papers (2021-12-27T16:12:30Z) - Cross-lingual Transfer for Speech Processing using Acoustic Language
Similarity [81.51206991542242]
Cross-lingual transfer offers a compelling way to help bridge this digital divide.
Current cross-lingual algorithms have shown success in text-based tasks and speech-related tasks over some low-resource languages.
We propose a language similarity approach that can efficiently identify acoustic cross-lingual transfer pairs across hundreds of languages.
arXiv Detail & Related papers (2021-11-02T01:55:17Z) - Cross-lingual hate speech detection based on multilingual
domain-specific word embeddings [4.769747792846004]
We propose to address the problem of multilingual hate speech detection from the perspective of transfer learning.
Our goal is to determine if knowledge from one particular language can be used to classify other language.
We show that the use of our simple yet specific multilingual hate representations improves classification results.
arXiv Detail & Related papers (2021-04-30T02:24:50Z) - CSTNet: Contrastive Speech Translation Network for Self-Supervised
Speech Representation Learning [11.552745999302905]
More than half of the 7,000 languages in the world are in imminent danger of going extinct.
It is relatively easy to obtain textual translations corresponding to speech.
We construct a convolutional neural network audio encoder capable of extracting linguistic representations from speech.
arXiv Detail & Related papers (2020-06-04T12:21:48Z) - That Sounds Familiar: an Analysis of Phonetic Representations Transfer
Across Languages [72.9927937955371]
We use the resources existing in other languages to train a multilingual automatic speech recognition model.
We observe significant improvements across all languages in the multilingual setting, and stark degradation in the crosslingual setting.
Our analysis uncovered that even the phones that are unique to a single language can benefit greatly from adding training data from other languages.
arXiv Detail & Related papers (2020-05-16T22:28:09Z) - Meta-Transfer Learning for Code-Switched Speech Recognition [72.84247387728999]
We propose a new learning method, meta-transfer learning, to transfer learn on a code-switched speech recognition system in a low-resource setting.
Our model learns to recognize individual languages, and transfer them so as to better recognize mixed-language speech by conditioning the optimization on the code-switching data.
arXiv Detail & Related papers (2020-04-29T14:27:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.