Multi-modal Medical Neurological Image Fusion using Wavelet Pooled Edge
Preserving Autoencoder
- URL: http://arxiv.org/abs/2310.11910v1
- Date: Wed, 18 Oct 2023 11:59:35 GMT
- Title: Multi-modal Medical Neurological Image Fusion using Wavelet Pooled Edge
Preserving Autoencoder
- Authors: Manisha Das, Deep Gupta, Petia Radeva, and Ashwini M Bakde
- Abstract summary: This paper presents an end-to-end unsupervised fusion model for multimodal medical images based on an edge-preserving dense autoencoder network.
In the proposed model, feature extraction is improved by using wavelet decomposition-based attention pooling of feature maps.
The proposed model is trained on a variety of medical image pairs which helps in capturing the intensity distributions of the source images.
- Score: 3.3828292731430545
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical image fusion integrates the complementary diagnostic information of
the source image modalities for improved visualization and analysis of
underlying anomalies. Recently, deep learning-based models have excelled the
conventional fusion methods by executing feature extraction, feature selection,
and feature fusion tasks, simultaneously. However, most of the existing
convolutional neural network (CNN) architectures use conventional pooling or
strided convolutional strategies to downsample the feature maps. It causes the
blurring or loss of important diagnostic information and edge details available
in the source images and dilutes the efficacy of the feature extraction
process. Therefore, this paper presents an end-to-end unsupervised fusion model
for multimodal medical images based on an edge-preserving dense autoencoder
network. In the proposed model, feature extraction is improved by using wavelet
decomposition-based attention pooling of feature maps. This helps in preserving
the fine edge detail information present in both the source images and enhances
the visual perception of fused images. Further, the proposed model is trained
on a variety of medical image pairs which helps in capturing the intensity
distributions of the source images and preserves the diagnostic information
effectively. Substantial experiments are conducted which demonstrate that the
proposed method provides improved visual and quantitative results as compared
to the other state-of-the-art fusion methods.
Related papers
- Simultaneous Tri-Modal Medical Image Fusion and Super-Resolution using Conditional Diffusion Model [2.507050016527729]
Tri-modal medical image fusion can provide a more comprehensive view of the disease's shape, location, and biological activity.
Due to the limitations of imaging equipment and considerations for patient safety, the quality of medical images is usually limited.
There is an urgent need for a technology that can both enhance image resolution and integrate multi-modal information.
arXiv Detail & Related papers (2024-04-26T12:13:41Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - A New Multimodal Medical Image Fusion based on Laplacian Autoencoder
with Channel Attention [3.1531360678320897]
Deep learning models have achieved end-to-end image fusion with highly robust and accurate performance.
Most DL-based fusion models perform down-sampling on the input images to minimize the number of learnable parameters and computations.
We propose a new multimodal medical image fusion model is proposed that is based on integrated Laplacian-Gaussian concatenation with attention pooling.
arXiv Detail & Related papers (2023-10-18T11:29:53Z) - Introducing Shape Prior Module in Diffusion Model for Medical Image
Segmentation [7.7545714516743045]
We propose an end-to-end framework called VerseDiff-UNet, which leverages the denoising diffusion probabilistic model (DDPM)
Our approach integrates the diffusion model into a standard U-shaped architecture.
We evaluate our method on a single dataset of spine images acquired through X-ray imaging.
arXiv Detail & Related papers (2023-09-12T03:05:00Z) - Convolutional neural network based on sparse graph attention mechanism
for MRI super-resolution [0.34410212782758043]
Medical image super-resolution (SR) reconstruction using deep learning techniques can enhance lesion analysis and assist doctors in improving diagnostic efficiency and accuracy.
Existing deep learning-based SR methods rely on convolutional neural networks (CNNs), which inherently limit the expressive capabilities of these models.
We propose an A-network that utilizes multiple convolution operator feature extraction modules (MCO) for extracting image features.
arXiv Detail & Related papers (2023-05-29T06:14:22Z) - Controllable Mind Visual Diffusion Model [58.83896307930354]
Brain signal visualization has emerged as an active research area, serving as a critical interface between the human visual system and computer vision models.
We propose a novel approach, referred to as Controllable Mind Visual Model Diffusion (CMVDM)
CMVDM extracts semantic and silhouette information from fMRI data using attribute alignment and assistant networks.
We then leverage a control model to fully exploit the extracted information for image synthesis, resulting in generated images that closely resemble the visual stimuli in terms of semantics and silhouette.
arXiv Detail & Related papers (2023-05-17T11:36:40Z) - CoCoNet: Coupled Contrastive Learning Network with Multi-level Feature
Ensemble for Multi-modality Image Fusion [72.8898811120795]
We propose a coupled contrastive learning network, dubbed CoCoNet, to realize infrared and visible image fusion.
Our method achieves state-of-the-art (SOTA) performance under both subjective and objective evaluation.
arXiv Detail & Related papers (2022-11-20T12:02:07Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
The shortage of annotated medical images is one of the biggest challenges in the field of medical image computing.
In this paper, we develop a novel generative method named generative adversarial U-Net.
Our newly designed model is domain-free and generalizable to various medical images.
arXiv Detail & Related papers (2021-01-12T23:02:26Z) - Automatic Diagnosis of Malaria from Thin Blood Smear Images using Deep
Convolutional Neural Network with Multi-Resolution Feature Fusion [0.7310043452300736]
An end-to-end deep learning-based approach is proposed for faster diagnosis of malaria from thin blood smear images.
An efficient, highly scalable deep neural network, named as DilationNet, is proposed that incorporates features from a large spectrum by varying dilation rates of convolutions to extract features from different receptive areas.
A feature fusion scheme is introduced with the proposed DeepFusionNet architecture for jointly optimizing the feature space of these individually trained networks.
Experiments on a publicly available dataset show outstanding performance with accuracy over 99.5% outperforming other state-of-the-art approaches.
arXiv Detail & Related papers (2020-12-09T22:44:05Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.