A Multi-Scale Decomposition MLP-Mixer for Time Series Analysis
- URL: http://arxiv.org/abs/2310.11959v2
- Date: Sun, 24 Mar 2024 11:50:28 GMT
- Title: A Multi-Scale Decomposition MLP-Mixer for Time Series Analysis
- Authors: Shuhan Zhong, Sizhe Song, Weipeng Zhuo, Guanyao Li, Yang Liu, S. -H. Gary Chan,
- Abstract summary: We propose MSD-Mixer, a Multi-Scale Decomposition-Mixer, which learns to explicitly decompose and represent the input time series in its different layers.
We demonstrate that MSD-Mixer consistently and significantly outperforms other state-of-the-art algorithms with better efficiency.
- Score: 14.40202378972828
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series data, including univariate and multivariate ones, are characterized by unique composition and complex multi-scale temporal variations. They often require special consideration of decomposition and multi-scale modeling to analyze. Existing deep learning methods on this best fit to univariate time series only, and have not sufficiently considered sub-series modeling and decomposition completeness. To address these challenges, we propose MSD-Mixer, a Multi-Scale Decomposition MLP-Mixer, which learns to explicitly decompose and represent the input time series in its different layers. To handle the multi-scale temporal patterns and multivariate dependencies, we propose a novel temporal patching approach to model the time series as multi-scale patches, and employ MLPs to capture intra- and inter-patch variations and channel-wise correlations. In addition, we propose a novel loss function to constrain both the mean and the autocorrelation of the decomposition residual for better decomposition completeness. Through extensive experiments on various real-world datasets for five common time series analysis tasks, we demonstrate that MSD-Mixer consistently and significantly outperforms other state-of-the-art algorithms with better efficiency.
Related papers
- MMFNet: Multi-Scale Frequency Masking Neural Network for Multivariate Time Series Forecasting [6.733646592789575]
Long-term Time Series Forecasting (LTSF) is critical for numerous real-world applications, such as electricity consumption planning, financial forecasting, and disease propagation analysis.
We introduce MMFNet, a novel model designed to enhance long-term multivariate forecasting by leveraging a multi-scale masked frequency decomposition approach.
MMFNet captures fine, intermediate, and coarse-grained temporal patterns by converting time series into frequency segments at varying scales while employing a learnable mask to filter out irrelevant components adaptively.
arXiv Detail & Related papers (2024-10-02T22:38:20Z) - UniTST: Effectively Modeling Inter-Series and Intra-Series Dependencies for Multivariate Time Series Forecasting [98.12558945781693]
We propose a transformer-based model UniTST containing a unified attention mechanism on the flattened patch tokens.
Although our proposed model employs a simple architecture, it offers compelling performance as shown in our experiments on several datasets for time series forecasting.
arXiv Detail & Related papers (2024-06-07T14:39:28Z) - Adaptive Multi-Scale Decomposition Framework for Time Series Forecasting [26.141054975797868]
We propose a novel Adaptive Multi-Scale Decomposition (AMD) framework for time series forecasting (TSF)
Our framework decomposes time series into distinct temporal patterns at multiple scales, leveraging the Multi-Scale Decomposable Mixing (MDM) block.
Our approach effectively models both temporal and channel dependencies and utilizes autocorrelation to refine multi-scale data integration.
arXiv Detail & Related papers (2024-06-06T05:27:33Z) - MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
We propose a Multi-Grained Correlations-based Prediction Network.
It simultaneously considers correlations at three levels to enhance prediction performance.
It employs adversarial training with an attention mechanism-based predictor and conditional discriminator to optimize prediction results at coarse-grained level.
arXiv Detail & Related papers (2024-05-30T03:32:44Z) - TimeMixer: Decomposable Multiscale Mixing for Time Series Forecasting [19.88184356154215]
Time series forecasting is widely used in applications, such as traffic planning and weather forecasting.
TimeMixer is able to achieve consistent state-of-the-art performances in both long-term and short-term forecasting tasks.
arXiv Detail & Related papers (2024-05-23T14:27:07Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
We present PDETime, a novel LMTF model inspired by the principles of Neural PDE solvers.
Our experimentation across seven diversetemporal real-world LMTF datasets reveals that PDETime adapts effectively to the intrinsic nature of the data.
arXiv Detail & Related papers (2024-02-25T17:39:44Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - MSGNet: Learning Multi-Scale Inter-Series Correlations for Multivariate
Time Series Forecasting [18.192600104502628]
Time series data often exhibit diverse intra-series and inter-series correlations.
Extensive experiments are conducted on several real-world datasets to showcase the effectiveness of MSGNet.
arXiv Detail & Related papers (2023-12-31T08:23:24Z) - Compatible Transformer for Irregularly Sampled Multivariate Time Series [75.79309862085303]
We propose a transformer-based encoder to achieve comprehensive temporal-interaction feature learning for each individual sample.
We conduct extensive experiments on 3 real-world datasets and validate that the proposed CoFormer significantly and consistently outperforms existing methods.
arXiv Detail & Related papers (2023-10-17T06:29:09Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.