Differential Equation Scaling Limits of Shaped and Unshaped Neural Networks
- URL: http://arxiv.org/abs/2310.12079v2
- Date: Thu, 18 Apr 2024 19:07:49 GMT
- Title: Differential Equation Scaling Limits of Shaped and Unshaped Neural Networks
- Authors: Mufan Bill Li, Mihai Nica,
- Abstract summary: We find similar differential equation based characterization for two types of unshaped networks.
We derive the first order correction to the layerwise correlation.
These results together provide a connection between shaped and unshaped network architectures.
- Score: 8.716913598251386
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent analyses of neural networks with shaped activations (i.e. the activation function is scaled as the network size grows) have led to scaling limits described by differential equations. However, these results do not a priori tell us anything about "ordinary" unshaped networks, where the activation is unchanged as the network size grows. In this article, we find similar differential equation based asymptotic characterization for two types of unshaped networks. Firstly, we show that the following two architectures converge to the same infinite-depth-and-width limit at initialization: (i) a fully connected ResNet with a $d^{-1/2}$ factor on the residual branch, where $d$ is the network depth. (ii) a multilayer perceptron (MLP) with depth $d \ll$ width $n$ and shaped ReLU activation at rate $d^{-1/2}$. Secondly, for an unshaped MLP at initialization, we derive the first order asymptotic correction to the layerwise correlation. In particular, if $\rho_\ell$ is the correlation at layer $\ell$, then $q_t = \ell^2 (1 - \rho_\ell)$ with $t = \frac{\ell}{n}$ converges to an SDE with a singularity at $t=0$. These results together provide a connection between shaped and unshaped network architectures, and opens up the possibility of studying the effect of normalization methods and how it connects with shaping activation functions.
Related papers
- Implicit Hypersurface Approximation Capacity in Deep ReLU Networks [0.0]
We develop a geometric approximation theory for deep feed-forward neural networks with ReLU activations.
We show that a deep fully-connected ReLU network of width $d+1$ can implicitly construct an approximation as its zero contour.
arXiv Detail & Related papers (2024-07-04T11:34:42Z) - Bayesian Inference with Deep Weakly Nonlinear Networks [57.95116787699412]
We show at a physics level of rigor that Bayesian inference with a fully connected neural network is solvable.
We provide techniques to compute the model evidence and posterior to arbitrary order in $1/N$ and at arbitrary temperature.
arXiv Detail & Related papers (2024-05-26T17:08:04Z) - Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
Recent studies show that a reproducing kernel Hilbert space (RKHS) is not a suitable space to model functions by neural networks.
In this paper, we study a suitable function space for over- parameterized two-layer neural networks with bounded norms.
arXiv Detail & Related papers (2024-04-29T15:04:07Z) - The Onset of Variance-Limited Behavior for Networks in the Lazy and Rich
Regimes [75.59720049837459]
We study the transition from infinite-width behavior to this variance limited regime as a function of sample size $P$ and network width $N$.
We find that finite-size effects can become relevant for very small datasets on the order of $P* sim sqrtN$ for regression with ReLU networks.
arXiv Detail & Related papers (2022-12-23T04:48:04Z) - Bounding the Width of Neural Networks via Coupled Initialization -- A
Worst Case Analysis [121.9821494461427]
We show how to significantly reduce the number of neurons required for two-layer ReLU networks.
We also prove new lower bounds that improve upon prior work, and that under certain assumptions, are best possible.
arXiv Detail & Related papers (2022-06-26T06:51:31Z) - On the Effective Number of Linear Regions in Shallow Univariate ReLU
Networks: Convergence Guarantees and Implicit Bias [50.84569563188485]
We show that gradient flow converges in direction when labels are determined by the sign of a target network with $r$ neurons.
Our result may already hold for mild over- parameterization, where the width is $tildemathcalO(r)$ and independent of the sample size.
arXiv Detail & Related papers (2022-05-18T16:57:10Z) - Correlation Functions in Random Fully Connected Neural Networks at
Finite Width [17.51364577113718]
This article considers fully connected neural networks with Gaussian random weights and biases and $L$ hidden layers.
For bounded non-linearities we give sharp recursion estimates in powers of $1/n$ for the joint correlation functions of the network output and its derivatives.
We find in both cases that the depth-to-width ratio $L/n$ plays the role of an effective network depth, controlling both the scale of fluctuations at individual neurons and the size of inter-neuron correlations.
arXiv Detail & Related papers (2022-04-03T11:57:18Z) - On the Neural Tangent Kernel Analysis of Randomly Pruned Neural Networks [91.3755431537592]
We study how random pruning of the weights affects a neural network's neural kernel (NTK)
In particular, this work establishes an equivalence of the NTKs between a fully-connected neural network and its randomly pruned version.
arXiv Detail & Related papers (2022-03-27T15:22:19Z) - Theory of Deep Convolutional Neural Networks III: Approximating Radial
Functions [7.943024117353317]
We consider a family of deep neural networks consisting of two groups of convolutional layers, a down operator, and a fully connected layer.
The network structure depends on two structural parameters which determine the numbers of convolutional layers and the width of the fully connected layer.
arXiv Detail & Related papers (2021-07-02T08:22:12Z) - Topology of deep neural networks [8.946655323517092]
We study how the topology of a data set $M = M_a cup M_b subseteq mathbbRd$ changes as it passes through the layers of a well-trained neural network.
arXiv Detail & Related papers (2020-04-13T17:53:36Z) - A Corrective View of Neural Networks: Representation, Memorization and
Learning [26.87238691716307]
We develop a corrective mechanism for neural network approximation.
We show that two-layer neural networks in the random features regime (RF) can memorize arbitrary labels.
We also consider three-layer neural networks and show that the corrective mechanism yields faster representation rates for smooth radial functions.
arXiv Detail & Related papers (2020-02-01T20:51:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.