Charge Manipulation Attacks Against Smart Electric Vehicle Charging Stations and Deep Learning-based Detection Mechanisms
- URL: http://arxiv.org/abs/2310.12254v1
- Date: Wed, 18 Oct 2023 18:38:59 GMT
- Title: Charge Manipulation Attacks Against Smart Electric Vehicle Charging Stations and Deep Learning-based Detection Mechanisms
- Authors: Hamidreza Jahangir, Subhash Lakshminarayana, H. Vincent Poor,
- Abstract summary: "Smart" electric vehicle charging stations (EVCSs) will be a key step toward achieving green transportation.
We investigate charge manipulation attacks (CMAs) against EV charging, in which an attacker manipulates the information exchanged during smart charging operations.
We propose an unsupervised deep learning-based mechanism to detect CMAs by monitoring the parameters involved in EV charging.
- Score: 49.37592437398933
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The widespread deployment of "smart" electric vehicle charging stations (EVCSs) will be a key step toward achieving green transportation. The connectivity features of smart EVCSs can be utilized to schedule EV charging operations while respecting user preferences, thus avoiding synchronous charging from a large number of customers and relieving grid congestion. However, the communication and connectivity requirements involved in smart charging raise cybersecurity concerns. In this work, we investigate charge manipulation attacks (CMAs) against EV charging, in which an attacker manipulates the information exchanged during smart charging operations. The objective of CMAs is to shift the EV aggregator's demand across different times of the day. The proposed CMAs can bypass existing protection mechanisms in EV communication protocols. We quantify the impact of CMAs on the EV aggregator's economic profit by modeling their participation in the day-ahead (DA) and real-time (RT) electricity markets. Finally, we propose an unsupervised deep learning-based mechanism to detect CMAs by monitoring the parameters involved in EV charging. We extensively analyze the attack impact and the efficiency of the proposed detection on real-world EV charging datasets. The results highlight the vulnerabilities of smart charging operations and the need for a monitoring mechanism to detect malicious CMAs.
Related papers
- Online Electric Vehicle Charging Detection Based on Memory-based Transformer using Smart Meter Data [19.865702673783154]
The popularity of Electric Vehicles (EVs) poses unique challenges for grid operators and infrastructure.
One critical aspect is the ability to accurately identify the presence of EV charging in the grid.
We propose a novel unsupervised memory-based transformer (M-TR) that can run in real-time (online) to detect EVs charging from a streaming smart meter.
arXiv Detail & Related papers (2024-08-06T03:19:14Z) - Divide-Conquer Transformer Learning for Predicting Electric Vehicle Charging Events Using Smart Meter Data [4.820576346277399]
We develop a home charging prediction method using historical smart meter data.
We achieve consistently high accuracy of over 96.81% across different prediction time spans.
arXiv Detail & Related papers (2024-03-20T02:17:16Z) - A Deep Q-Learning based Smart Scheduling of EVs for Demand Response in
Smart Grids [0.0]
We propose a model-free solution, leveraging Deep Q-Learning to schedule the charging and discharging activities of EVs within a microgrid.
We adapted the Bellman Equation to assess the value of a state based on specific rewards for EV scheduling actions and used a neural network to estimate Q-values for available actions and the epsilon-greedy algorithm to balance exploitation and exploration to meet the target energy profile.
arXiv Detail & Related papers (2024-01-05T06:04:46Z) - DynamiQS: Quantum Secure Authentication for Dynamic Charging of Electric Vehicles [61.394095512765304]
Dynamic Wireless Power Transfer (DWPT) is a novel technology that allows charging an electric vehicle while driving.
Recent advancements in quantum computing jeopardize classical public key cryptography.
We propose DynamiQS, the first post-quantum secure authentication protocol for dynamic wireless charging.
arXiv Detail & Related papers (2023-12-20T09:40:45Z) - An Efficient Distributed Multi-Agent Reinforcement Learning for EV
Charging Network Control [2.5477011559292175]
We introduce a decentralized Multi-agent Reinforcement Learning (MARL) charging framework that prioritizes the preservation of privacy for EV owners.
Our results demonstrate that the CTDE framework improves the performance of the charging network by reducing the network costs.
arXiv Detail & Related papers (2023-08-24T16:53:52Z) - Federated Reinforcement Learning for Real-Time Electric Vehicle Charging
and Discharging Control [42.17503767317918]
This paper develops an optimal EV charging/discharging control strategy for different EV users under dynamic environments.
A horizontal federated reinforcement learning (HFRL)-based method is proposed to fit various users' behaviors and dynamic environments.
Simulation results illustrate that the proposed real-time EV charging/discharging control strategy can perform well among various factors.
arXiv Detail & Related papers (2022-10-04T08:22:46Z) - Learning to Operate an Electric Vehicle Charging Station Considering
Vehicle-grid Integration [4.855689194518905]
We propose a novel centralized allocation and decentralized execution (CADE) reinforcement learning (RL) framework to maximize the charging station's profit.
In the centralized allocation process, EVs are allocated to either the waiting or charging spots. In the decentralized execution process, each charger makes its own charging/discharging decision while learning the action-value functions from a shared replay memory.
Numerical results show that the proposed CADE framework is both computationally efficient and scalable, and significantly outperforms the baseline model predictive control (MPC)
arXiv Detail & Related papers (2021-11-01T23:10:28Z) - Risk Adversarial Learning System for Connected and Autonomous Vehicle
Charging [43.42105971560163]
We study the design of a rational decision support system (RDSS) for a connected and autonomous vehicle charging infrastructure (CAV-CI)
In the considered CAV-CI, the distribution system operator (DSO) deploys electric vehicle supply equipment (EVSE) to provide an EV charging facility for human-driven connected vehicles (CVs) and autonomous vehicles (AVs)
The charging request by the human-driven EV becomes irrational when it demands more energy and charging period than its actual need.
We propose a novel risk adversarial multi-agent learning system (ALS) for CAV-CI to solve
arXiv Detail & Related papers (2021-08-02T02:38:15Z) - Adversarial defense for automatic speaker verification by cascaded
self-supervised learning models [101.42920161993455]
More and more malicious attackers attempt to launch adversarial attacks at automatic speaker verification (ASV) systems.
We propose a standard and attack-agnostic method based on cascaded self-supervised learning models to purify the adversarial perturbations.
Experimental results demonstrate that the proposed method achieves effective defense performance and can successfully counter adversarial attacks.
arXiv Detail & Related papers (2021-02-14T01:56:43Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.