Equipping Federated Graph Neural Networks with Structure-aware Group Fairness
- URL: http://arxiv.org/abs/2310.12350v3
- Date: Mon, 13 May 2024 20:22:24 GMT
- Title: Equipping Federated Graph Neural Networks with Structure-aware Group Fairness
- Authors: Nan Cui, Xiuling Wang, Wendy Hui Wang, Violet Chen, Yue Ning,
- Abstract summary: Graph Neural Networks (GNNs) have been widely used for various types of graph data processing and analytical tasks.
textF2$GNN is a Fair Federated Graph Neural Network that enhances group fairness of federated GNNs.
- Score: 9.60194163484604
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have been widely used for various types of graph data processing and analytical tasks in different domains. Training GNNs over centralized graph data can be infeasible due to privacy concerns and regulatory restrictions. Thus, federated learning (FL) becomes a trending solution to address this challenge in a distributed learning paradigm. However, as GNNs may inherit historical bias from training data and lead to discriminatory predictions, the bias of local models can be easily propagated to the global model in distributed settings. This poses a new challenge in mitigating bias in federated GNNs. To address this challenge, we propose $\text{F}^2$GNN, a Fair Federated Graph Neural Network, that enhances group fairness of federated GNNs. As bias can be sourced from both data and learning algorithms, $\text{F}^2$GNN aims to mitigate both types of bias under federated settings. First, we provide theoretical insights on the connection between data bias in a training graph and statistical fairness metrics of the trained GNN models. Based on the theoretical analysis, we design $\text{F}^2$GNN which contains two key components: a fairness-aware local model update scheme that enhances group fairness of the local models on the client side, and a fairness-weighted global model update scheme that takes both data bias and fairness metrics of local models into consideration in the aggregation process. We evaluate $\text{F}^2$GNN empirically versus a number of baseline methods, and demonstrate that $\text{F}^2$GNN outperforms these baselines in terms of both fairness and model accuracy.
Related papers
- ComFairGNN: Community Fair Graph Neural Network [6.946292440025013]
We introduce a novel framework designed to mitigate community-level bias in Graph Neural Networks (GNNs)
Our approach employs a learnable coreset-based debiasing function that addresses bias arising from diverse local neighborhood distributions during GNNs neighborhood aggregation.
arXiv Detail & Related papers (2024-11-07T02:04:34Z) - Rethinking Fair Graph Neural Networks from Re-balancing [26.70771023446706]
We find that simple re-balancing methods can easily match or surpass existing fair GNN methods.
We propose FairGB, Fair Graph Neural Network via re-Balancing, which mitigates the unfairness of GNNs by group balancing.
arXiv Detail & Related papers (2024-07-16T11:39:27Z) - Learning to Reweight for Graph Neural Network [63.978102332612906]
Graph Neural Networks (GNNs) show promising results for graph tasks.
Existing GNNs' generalization ability will degrade when there exist distribution shifts between testing and training graph data.
We propose a novel nonlinear graph decorrelation method, which can substantially improve the out-of-distribution generalization ability.
arXiv Detail & Related papers (2023-12-19T12:25:10Z) - Mitigating Relational Bias on Knowledge Graphs [51.346018842327865]
We propose Fair-KGNN, a framework that simultaneously alleviates multi-hop bias and preserves the proximity information of entity-to-relation in knowledge graphs.
We develop two instances of Fair-KGNN incorporating with two state-of-the-art KGNN models, RGCN and CompGCN, to mitigate gender-occupation and nationality-salary bias.
arXiv Detail & Related papers (2022-11-26T05:55:34Z) - Interpreting Unfairness in Graph Neural Networks via Training Node
Attribution [46.384034587689136]
We study a novel problem of interpreting GNN unfairness through attributing it to the influence of training nodes.
Specifically, we propose a novel strategy named Probabilistic Distribution Disparity (PDD) to measure the bias exhibited in GNNs.
We verify the validity of PDD and the effectiveness of influence estimation through experiments on real-world datasets.
arXiv Detail & Related papers (2022-11-25T21:52:30Z) - Analyzing the Effect of Sampling in GNNs on Individual Fairness [79.28449844690566]
Graph neural network (GNN) based methods have saturated the field of recommender systems.
We extend an existing method for promoting individual fairness on graphs to support mini-batch, or sub-sample based, training of a GNN.
We show that mini-batch training facilitate individual fairness promotion by allowing for local nuance to guide the process of fairness promotion in representation learning.
arXiv Detail & Related papers (2022-09-08T16:20:25Z) - FairMod: Fair Link Prediction and Recommendation via Graph Modification [7.239011273682701]
We propose FairMod to mitigate the bias learned by GNNs through modifying the input graph.
Our proposed models perform either microscopic or macroscopic edits to the input graph while training GNNs and learn node embeddings that are both accurate and fair under the context of link recommendations.
We demonstrate the effectiveness of our approach on four real world datasets and show that we can improve the recommendation fairness by several factors at negligible cost to link prediction accuracy.
arXiv Detail & Related papers (2022-01-27T15:49:33Z) - Generalizing Graph Neural Networks on Out-Of-Distribution Graphs [51.33152272781324]
Graph Neural Networks (GNNs) are proposed without considering the distribution shifts between training and testing graphs.
In such a setting, GNNs tend to exploit subtle statistical correlations existing in the training set for predictions, even though it is a spurious correlation.
We propose a general causal representation framework, called StableGNN, to eliminate the impact of spurious correlations.
arXiv Detail & Related papers (2021-11-20T18:57:18Z) - EDITS: Modeling and Mitigating Data Bias for Graph Neural Networks [29.974829042502375]
We develop a framework named EDITS to mitigate the bias in attributed networks.
EDITS works in a model-agnostic manner, which means that it is independent of the specific GNNs applied for downstream tasks.
arXiv Detail & Related papers (2021-08-11T14:07:01Z) - Shift-Robust GNNs: Overcoming the Limitations of Localized Graph
Training data [52.771780951404565]
Shift-Robust GNN (SR-GNN) is designed to account for distributional differences between biased training data and the graph's true inference distribution.
We show that SR-GNN outperforms other GNN baselines by accuracy, eliminating at least (40%) of the negative effects introduced by biased training data.
arXiv Detail & Related papers (2021-08-02T18:00:38Z) - FedGraphNN: A Federated Learning System and Benchmark for Graph Neural
Networks [68.64678614325193]
Graph Neural Network (GNN) research is rapidly growing thanks to the capacity of GNNs to learn representations from graph-structured data.
Centralizing a massive amount of real-world graph data for GNN training is prohibitive due to user-side privacy concerns.
We introduce FedGraphNN, an open research federated learning system and a benchmark to facilitate GNN-based FL research.
arXiv Detail & Related papers (2021-04-14T22:11:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.