Resolving Photon Numbers Using Ultra-High-Resolution Timing of a Single
Low-Jitter Superconducting Nanowire Detector
- URL: http://arxiv.org/abs/2310.12472v1
- Date: Thu, 19 Oct 2023 05:11:06 GMT
- Title: Resolving Photon Numbers Using Ultra-High-Resolution Timing of a Single
Low-Jitter Superconducting Nanowire Detector
- Authors: Gregor Sauer, Mirco Kolarczik, Rodrigo Gomez, Johanna Conrad, and
Fabian Steinlechner
- Abstract summary: Photon-number-resolving (PNR) detectors are a key enabling technology in photonic quantum information processing.
Here, we demonstrate the PNR capacity of conventional superconducting nanowire single-photon detectors by performing ultra-high-resolution time-tagging of the detector-generated electrical pulses.
We present the implementation of such a PNR detector in the telecom C-band and its characterization by measuring the photon-number statistics of coherent light with tunable intensity.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Photon-number-resolving (PNR) detectors are a key enabling technology in
photonic quantum information processing. Here, we demonstrate the PNR capacity
of conventional superconducting nanowire single-photon detectors by performing
ultra-high-resolution time-tagging of the detector-generated electrical pulses.
This method provides a viable approach for PNR with high detection efficiency
and a high operational repetition rate. We present the implementation of such a
PNR detector in the telecom C-band and its characterization by measuring the
photon-number statistics of coherent light with tunable intensity.
Additionally, we demonstrate the capabilities of the detection method by
measuring photon-number correlations of non-classical states.
Related papers
- Optically-Sampled Superconducting-Nanostrip Photon-Number Resolving Detector for Non-Classical Quantum State Generation [0.0]
Photon number-resolving detectors (PNRDs) are the ultimate optical sensors.
Superconducting-nanostrip photon detectors (SNSPDs) have been found to have photon number resolving capability without multiplexing.
arXiv Detail & Related papers (2024-05-11T04:15:20Z) - Design and simulation of a transmon qubit chip for Axion detection [103.69390312201169]
Device based on superconducting qubits has been successfully applied in detecting few-GHz single photons via Quantum Non-Demolition measurement (QND)
In this study, we present Qub-IT's status towards the realization of its first superconducting qubit device.
arXiv Detail & Related papers (2023-10-08T17:11:42Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - GHz detection rates and dynamic photon-number resolution with
superconducting nanowire arrays [0.0]
Superconducting-nanowire single-photon detectors (SNSPDs) have enabled the realization of several quantum optics technologies.
We report the fabrication of an SNSPD array composed of 14 independent pixels, achieving a system detection efficiency (SDE) of 90% in the telecom band.
We show 2-photon and 3-photon fidelities of 74% and 57% respectively, which represent state-of-the-art results for fiber-coupled SNSPDs.
arXiv Detail & Related papers (2023-03-30T14:16:59Z) - Optimal Amplitude Multiplexing of a Series of Superconducting Nanowire
Single Photon Detectors [58.720142291102135]
Integrated arrays of Superconducting Nanowire Single Photon Detectors (SNSPDs) have shown capabilities such as Photon Number Resolution, single photon imaging and coincidences detection.
The growing complexity of such applications requires the use of multiplexing schemes for the simultaneous readout of different detectors.
A simple multiplexing scheme can be realized by arranging a series of SNSPDs elements, shunted by appropriate resistances.
arXiv Detail & Related papers (2023-03-14T15:57:17Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - High-efficiency and fast photon-number resolving parallel
superconducting nanowire single-photon detector [0.0]
Single-photon detectors are an enabling technology in many areas such as photonic quantum computing, non-classical light source characterisation and quantum imaging.
Here, we demonstrate high-efficiency PNR detectors using a parallel superconducting nanowire single-photon detector (P-SNSPD) architecture that does not suffer from crosstalk between the pixels and that is free of latching.
arXiv Detail & Related papers (2022-07-29T08:15:46Z) - Photon detection probability prediction using one-dimensional generative
neural network [62.997667081978825]
We propose a one-dimensional generative model which efficiently generates features using an OuterProduct-layer.
This model bypasses photon transport simulation and predicts the number of photons detected by particular photon detectors at the same level of detail as theGeant4simulation.
This generative model can be used to quickly predict photon detection probability in huge liquid argon detectors like ProtoDUNE or DUNE.
arXiv Detail & Related papers (2021-09-11T01:43:12Z) - Quantum detector tomography of a high dynamic-range superconducting
nanowire single-photon detector [0.0]
We demonstrate and verify quantum detector tomography of a superconducting nanowire single-photon detector (SNSPD) in a multiplexing scheme.
We reconstruct the positive operator valued measure (POVM) of this device in the low photon-number regime, and use the extracted parameters to show the POVMs.
Our work shows that a reliable quantum description of large-scale SNSPD devices is possible, and should be applicable to other multiplexing configurations.
arXiv Detail & Related papers (2021-02-23T10:17:12Z) - Temporal array with superconducting nanowire single-photon detectors for
photon-number-resolution [0.0]
We present a 16 element, temporal-array, photon-number-resolving (PNR) detector, which is a multiplexed single-photon detector that splits an input signal over multiple time-bins.
A theoretical investigation of the PNR capabilities of the detector is performed and it is concluded that compared to a single-photon detector, our array detector can resolve one order of magnitude higher mean photon numbers.
arXiv Detail & Related papers (2020-09-17T14:30:51Z) - Position Sensitive Response of a Single-Pixel Large-Area SNSPD [58.720142291102135]
Superconducting nanowire single photon detectors (SNSPDs) are typically used as single-mode-fiber-coupled single-pixel detectors.
Large area detectors are increasingly critical for applications ranging from microscopy to free-space quantum communications.
We explore changes in the rising edge of the readout pulse for large-area SNSPDs as a function of the bias current, optical spot size on the detector, and number of photons per pulse.
arXiv Detail & Related papers (2020-05-29T23:33:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.