Knowledge-Augmented Language Model Verification
- URL: http://arxiv.org/abs/2310.12836v1
- Date: Thu, 19 Oct 2023 15:40:00 GMT
- Title: Knowledge-Augmented Language Model Verification
- Authors: Jinheon Baek, Soyeong Jeong, Minki Kang, Jong C. Park, Sung Ju Hwang
- Abstract summary: Recent Language Models (LMs) have shown impressive capabilities in generating texts with the knowledge internalized in parameters.
We propose to verify the output and the knowledge of the knowledge-augmented LMs with a separate verifier.
Our results show that the proposed verifier effectively identifies retrieval and generation errors, allowing LMs to provide more factually correct outputs.
- Score: 68.6099592486075
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent Language Models (LMs) have shown impressive capabilities in generating
texts with the knowledge internalized in parameters. Yet, LMs often generate
the factually incorrect responses to the given queries, since their knowledge
may be inaccurate, incomplete, and outdated. To address this problem, previous
works propose to augment LMs with the knowledge retrieved from an external
knowledge source. However, such approaches often show suboptimal text
generation performance due to two reasons: 1) the model may fail to retrieve
the knowledge relevant to the given query, or 2) the model may not faithfully
reflect the retrieved knowledge in the generated text. To overcome these, we
propose to verify the output and the knowledge of the knowledge-augmented LMs
with a separate verifier, which is a small LM that is trained to detect those
two types of errors through instruction-finetuning. Then, when the verifier
recognizes an error, we can rectify it by either retrieving new knowledge or
generating new text. Further, we use an ensemble of the outputs from different
instructions with a single verifier to enhance the reliability of the
verification processes. We validate the effectiveness of the proposed
verification steps on multiple question answering benchmarks, whose results
show that the proposed verifier effectively identifies retrieval and generation
errors, allowing LMs to provide more factually correct outputs. Our code is
available at https://github.com/JinheonBaek/KALMV.
Related papers
- Disentangling Memory and Reasoning Ability in Large Language Models [97.26827060106581]
We propose a new inference paradigm that decomposes the complex inference process into two distinct and clear actions.
Our experiment results show that this decomposition improves model performance and enhances the interpretability of the inference process.
arXiv Detail & Related papers (2024-11-20T17:55:38Z) - Retrieving, Rethinking and Revising: The Chain-of-Verification Can Improve Retrieval Augmented Generation [38.80878966092216]
Recent Retrieval Augmented Generation (RAG) aims to enhance Large Language Models (LLMs)
We propose the chain-of-verification (CoV-RAG) to enhance the external retrieval correctness and internal generation consistency.
arXiv Detail & Related papers (2024-10-08T08:34:54Z) - Evaluating the Reliability of Self-Explanations in Large Language Models [2.8894038270224867]
We evaluate two kinds of such self-explanations - extractive and counterfactual.
Our findings reveal, that, while these self-explanations can correlate with human judgement, they do not fully and accurately follow the model's decision process.
We show that this gap can be bridged because prompting LLMs for counterfactual explanations can produce faithful, informative, and easy-to-verify results.
arXiv Detail & Related papers (2024-07-19T17:41:08Z) - CaLM: Contrasting Large and Small Language Models to Verify Grounded Generation [76.31621715032558]
Grounded generation aims to equip language models (LMs) with the ability to produce more credible and accountable responses.
We introduce CaLM, a novel verification framework.
Our framework empowers smaller LMs, which rely less on parametric memory, to validate the output of larger LMs.
arXiv Detail & Related papers (2024-06-08T06:04:55Z) - Detecting Edited Knowledge in Language Models [5.260519479124422]
Knowledge editing methods (KEs) can update language models' obsolete or inaccurate knowledge learned from pre-training.
Knowing whether a generated output is based on edited knowledge or first-hand knowledge from pre-training can increase users' trust in generative models.
We propose a novel task: detecting edited knowledge in language models.
arXiv Detail & Related papers (2024-05-04T22:02:24Z) - Robust and Scalable Model Editing for Large Language Models [75.95623066605259]
We propose EREN (Edit models by REading Notes) to improve the scalability and robustness of LLM editing.
Unlike existing techniques, it can integrate knowledge from multiple edits, and correctly respond to syntactically similar but semantically unrelated inputs.
arXiv Detail & Related papers (2024-03-26T06:57:23Z) - GenAudit: Fixing Factual Errors in Language Model Outputs with Evidence [64.95492752484171]
We present GenAudit -- a tool intended to assist fact-checking LLM responses for document-grounded tasks.
We train models to execute these tasks, and design an interactive interface to present suggested edits and evidence to users.
To ensure that most errors are flagged by the system, we propose a method that can increase the error recall while minimizing impact on precision.
arXiv Detail & Related papers (2024-02-19T21:45:55Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
Large Language Models (LLMs) have exhibited impressive generation capabilities, but they suffer from hallucinations when relying on their internal knowledge.
Retrieval-augmented LLMs have emerged as a potential solution to ground LLMs in external knowledge.
arXiv Detail & Related papers (2023-10-31T04:37:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.