StoryAnalogy: Deriving Story-level Analogies from Large Language Models
to Unlock Analogical Understanding
- URL: http://arxiv.org/abs/2310.12874v2
- Date: Mon, 23 Oct 2023 11:58:24 GMT
- Title: StoryAnalogy: Deriving Story-level Analogies from Large Language Models
to Unlock Analogical Understanding
- Authors: Cheng Jiayang, Lin Qiu, Tsz Ho Chan, Tianqing Fang, Weiqi Wang,
Chunkit Chan, Dongyu Ru, Qipeng Guo, Hongming Zhang, Yangqiu Song, Yue Zhang,
Zheng Zhang
- Abstract summary: We evaluate the ability to identify and generate analogies by constructing a first-of-its-kind large-scale story-level analogy corpus.
textscStory Analogy contains 24K story pairs from diverse domains with human annotations on two similarities from the extended Structure-Mapping Theory.
We observe that the data in textscStory Analogy can improve the quality of analogy generation in large language models.
- Score: 72.38872974837462
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Analogy-making between narratives is crucial for human reasoning. In this
paper, we evaluate the ability to identify and generate analogies by
constructing a first-of-its-kind large-scale story-level analogy corpus,
\textsc{StoryAnalogy}, which contains 24K story pairs from diverse domains with
human annotations on two similarities from the extended Structure-Mapping
Theory. We design a set of tests on \textsc{StoryAnalogy}, presenting the first
evaluation of story-level analogy identification and generation. Interestingly,
we find that the analogy identification tasks are incredibly difficult not only
for sentence embedding models but also for the recent large language models
(LLMs) such as ChatGPT and LLaMa. ChatGPT, for example, only achieved around
30% accuracy in multiple-choice questions (compared to over 85% accuracy for
humans). Furthermore, we observe that the data in \textsc{StoryAnalogy} can
improve the quality of analogy generation in LLMs, where a fine-tuned
FlanT5-xxl model achieves comparable performance to zero-shot ChatGPT.
Related papers
- Explaining Datasets in Words: Statistical Models with Natural Language Parameters [66.69456696878842]
We introduce a family of statistical models -- including clustering, time series, and classification models -- parameterized by natural language predicates.
We apply our framework to a wide range of problems: taxonomizing user chat dialogues, characterizing how they evolve across time, finding categories where one language model is better than the other.
arXiv Detail & Related papers (2024-09-13T01:40:20Z) - ARN: Analogical Reasoning on Narratives [13.707344123755126]
We develop a framework that operationalizes dominant theories of analogy, using narrative elements to create surface and system mappings.
We show that while all LLMs can largely recognize near analogies, even the largest ones struggle with far analogies in a zero-shot setting.
arXiv Detail & Related papers (2023-10-02T08:58:29Z) - Description-Based Text Similarity [59.552704474862004]
We identify the need to search for texts based on abstract descriptions of their content.
We propose an alternative model that significantly improves when used in standard nearest neighbor search.
arXiv Detail & Related papers (2023-05-21T17:14:31Z) - ANALOGYKB: Unlocking Analogical Reasoning of Language Models with A Million-scale Knowledge Base [51.777618249271725]
ANALOGYKB is a million-scale analogy knowledge base derived from existing knowledge graphs (KGs)
It identifies two types of analogies from the KGs: 1) analogies of the same relations, which can be directly extracted from the KGs, and 2) analogies of analogous relations, which are identified with a selection and filtering pipeline enabled by large language models (LLMs)
arXiv Detail & Related papers (2023-05-10T09:03:01Z) - Scientific and Creative Analogies in Pretrained Language Models [24.86477727507679]
This paper examines the encoding of analogy in large-scale pretrained language models, such as BERT and GPT-2.
We introduce the Scientific and Creative Analogy dataset (SCAN), a novel analogy dataset containing systematic mappings of multiple attributes and relational structures across dissimilar domains.
We find that state-of-the-art LMs achieve low performance on these complex analogy tasks, highlighting the challenges still posed by analogy understanding.
arXiv Detail & Related papers (2022-11-28T12:49:44Z) - Life is a Circus and We are the Clowns: Automatically Finding Analogies
between Situations and Processes [12.8252101640812]
Much research has suggested that analogies are key to non-brittle systems that can adapt to new domains.
Despite their importance, analogies received little attention in the NLP community.
arXiv Detail & Related papers (2022-10-21T18:54:17Z) - Robust Preference Learning for Storytelling via Contrastive
Reinforcement Learning [53.92465205531759]
Controlled automated story generation seeks to generate natural language stories satisfying constraints from natural language critiques or preferences.
We train a contrastive bi-encoder model to align stories with human critiques, building a general purpose preference model.
We further fine-tune the contrastive reward model using a prompt-learning technique to increase story generation robustness.
arXiv Detail & Related papers (2022-10-14T13:21:33Z) - BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models
Identify Analogies? [35.381345454627]
We analyze the capabilities of transformer-based language models on an unsupervised task of identifying analogies.
Off-the-shelf language models can identify analogies to a certain extent, but struggle with abstract and complex relations.
Our results raise important questions for future work about how, and to what extent, pre-trained language models capture knowledge about abstract semantic relations.
arXiv Detail & Related papers (2021-05-11T11:38:49Z) - STORIUM: A Dataset and Evaluation Platform for Machine-in-the-Loop Story
Generation [48.56586847883825]
We introduce a dataset and evaluation platform built from STORIUM, an online collaborative storytelling community.
Our dataset contains 6K lengthy stories with fine-grained natural language annotations interspersed throughout each narrative.
We evaluate language models fine-tuned on our dataset by integrating them onto STORIUM, where real authors can query a model for suggested story continuations and then edit them.
arXiv Detail & Related papers (2020-10-04T23:26:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.