Transparency challenges in policy evaluation with causal machine learning -- improving usability and accountability
- URL: http://arxiv.org/abs/2310.13240v2
- Date: Fri, 29 Mar 2024 09:49:02 GMT
- Title: Transparency challenges in policy evaluation with causal machine learning -- improving usability and accountability
- Authors: Patrick Rehill, Nicholas Biddle,
- Abstract summary: There is no globally interpretable way to understand how a model makes estimates.
It is difficult to understand whether causal machine learning models are functioning in ways that are fair.
This paper explores why transparency issues are a problem for causal machine learning in public policy evaluation applications.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal machine learning tools are beginning to see use in real-world policy evaluation tasks to flexibly estimate treatment effects. One issue with these methods is that the machine learning models used are generally black boxes, i.e., there is no globally interpretable way to understand how a model makes estimates. This is a clear problem in policy evaluation applications, particularly in government, because it is difficult to understand whether such models are functioning in ways that are fair, based on the correct interpretation of evidence and transparent enough to allow for accountability if things go wrong. However, there has been little discussion of transparency problems in the causal machine learning literature and how these might be overcome. This paper explores why transparency issues are a problem for causal machine learning in public policy evaluation applications and considers ways these problems might be addressed through explainable AI tools and by simplifying models in line with interpretable AI principles. It then applies these ideas to a case-study using a causal forest model to estimate conditional average treatment effects for a hypothetical change in the school leaving age in Australia. It shows that existing tools for understanding black-box predictive models are poorly suited to causal machine learning and that simplifying the model to make it interpretable leads to an unacceptable increase in error (in this application). It concludes that new tools are needed to properly understand causal machine learning models and the algorithms that fit them.
Related papers
- Fairness Implications of Heterogeneous Treatment Effect Estimation with
Machine Learning Methods in Policy-making [0.0]
We argue that standard AI Fairness approaches for predictive machine learning are not suitable for all causal machine learning applications.
We argue that policy-making is best seen as a joint decision where the causal machine learning model usually only has indirect power.
arXiv Detail & Related papers (2023-09-02T03:06:14Z) - FairLay-ML: Intuitive Remedies for Unfairness in Data-Driven
Social-Critical Algorithms [13.649336187121095]
This thesis explores whether open-sourced machine learning (ML) model explanation tools can allow a layman to visualize, understand, and suggest intuitive remedies to unfairness in ML-based decision-support systems.
This thesis presents FairLay-ML, a proof-of-concept GUI integrating some of the most promising tools to provide intuitive explanations for unfair logic in ML models.
arXiv Detail & Related papers (2023-07-11T06:05:06Z) - Textual Explanations and Critiques in Recommendation Systems [8.406549970145846]
dissertation focuses on two fundamental challenges of addressing this need.
The first involves explanation generation in a scalable and data-driven manner.
The second challenge consists in making explanations actionable, and we refer to it as critiquing.
arXiv Detail & Related papers (2022-05-15T11:59:23Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
Explainable Artificial Intelligence (XAI) is an emerging research field bringing transparency to highly complex machine learning (ML) models.
This paper offers a comprehensive overview over techniques that apply XAI practically for improving various properties of ML models.
We show empirically through experiments on toy and realistic settings how explanations can help improve properties such as model generalization ability or reasoning.
arXiv Detail & Related papers (2022-03-15T15:44:28Z) - Individual Explanations in Machine Learning Models: A Case Study on
Poverty Estimation [63.18666008322476]
Machine learning methods are being increasingly applied in sensitive societal contexts.
The present case study has two main objectives. First, to expose these challenges and how they affect the use of relevant and novel explanations methods.
And second, to present a set of strategies that mitigate such challenges, as faced when implementing explanation methods in a relevant application domain.
arXiv Detail & Related papers (2021-04-09T01:54:58Z) - Individual Explanations in Machine Learning Models: A Survey for
Practitioners [69.02688684221265]
The use of sophisticated statistical models that influence decisions in domains of high societal relevance is on the rise.
Many governments, institutions, and companies are reluctant to their adoption as their output is often difficult to explain in human-interpretable ways.
Recently, the academic literature has proposed a substantial amount of methods for providing interpretable explanations to machine learning models.
arXiv Detail & Related papers (2021-04-09T01:46:34Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z) - Knowledge as Invariance -- History and Perspectives of
Knowledge-augmented Machine Learning [69.99522650448213]
Research in machine learning is at a turning point.
Research interests are shifting away from increasing the performance of highly parameterized models to exceedingly specific tasks.
This white paper provides an introduction and discussion of this emerging field in machine learning research.
arXiv Detail & Related papers (2020-12-21T15:07:19Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
Black-box nature of Deep Learning models has posed unanswered questions about what they learn from data.
Generative Adversarial Network (GAN) and multi-objectives are used to furnish a plausible attack to the audited model.
Its utility is showcased within a human face classification task, unveiling the enormous potential of the proposed framework.
arXiv Detail & Related papers (2020-03-25T11:08:56Z) - A Hierarchy of Limitations in Machine Learning [0.0]
This paper attempts a comprehensive, structured overview of the specific conceptual, procedural, and statistical limitations of models in machine learning when applied to society.
Modelers themselves can use the described hierarchy to identify possible failure points and think through how to address them.
Consumers of machine learning models can know what to question when confronted with the decision about if, where, and how to apply machine learning.
arXiv Detail & Related papers (2020-02-12T19:39:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.