Explicit Alignment and Many-to-many Entailment Based Reasoning for
Conversational Machine Reading
- URL: http://arxiv.org/abs/2310.13409v1
- Date: Fri, 20 Oct 2023 10:27:24 GMT
- Title: Explicit Alignment and Many-to-many Entailment Based Reasoning for
Conversational Machine Reading
- Authors: Yangyang Luo, Shiyu Tian, Caixia Yuan, Xiaojie Wang
- Abstract summary: Conversational Machine Reading (CMR) requires answering a user's initial question through multi-turn dialogue interactions based on a given document.
Our proposed method achieves state-of-the-art in micro-accuracy and ranks the first place on the public leaderboard of the CMR benchmark dataset ShARC.
- Score: 8.910847114561191
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conversational Machine Reading (CMR) requires answering a user's initial
question through multi-turn dialogue interactions based on a given document.
Although there exist many effective methods, they largely neglected the
alignment between the document and the user-provided information, which
significantly affects the intermediate decision-making and subsequent follow-up
question generation. To address this issue, we propose a pipeline framework
that (1) aligns the aforementioned two sides in an explicit way, (2)makes
decisions using a lightweight many-to-many entailment reasoning module, and (3)
directly generates follow-up questions based on the document and previously
asked questions. Our proposed method achieves state-of-the-art in
micro-accuracy and ranks the first place on the public leaderboard of the CMR
benchmark dataset ShARC.
Related papers
- Selecting Query-bag as Pseudo Relevance Feedback for Information-seeking Conversations [76.70349332096693]
Information-seeking dialogue systems are widely used in e-commerce systems.
We propose a Query-bag based Pseudo Relevance Feedback framework (QB-PRF)
It constructs a query-bag with related queries to serve as pseudo signals to guide information-seeking conversations.
arXiv Detail & Related papers (2024-03-22T08:10:32Z) - Reranking Passages with Coarse-to-Fine Neural Retriever Enhanced by List-Context Information [0.9463895540925061]
This paper presents a list-context attention mechanism to augment the passage representation by incorporating the list-context information from other candidates.
The proposed coarse-to-fine (C2F) neural retriever addresses the out-of-memory limitation of the passage attention mechanism.
It integrates the coarse and fine rankers into the joint optimization process, allowing for feedback between the two layers to update the model simultaneously.
arXiv Detail & Related papers (2023-08-23T09:29:29Z) - Towards End-to-End Open Conversational Machine Reading [57.18251784418258]
In open-retrieval conversational machine reading (OR-CMR) task, machines are required to do multi-turn question answering given dialogue history and a textual knowledge base.
We model OR-CMR as a unified text-to-text task in a fully end-to-end style. Experiments on the ShARC and OR-ShARC dataset show the effectiveness of our proposed end-to-end framework.
arXiv Detail & Related papers (2022-10-13T15:50:44Z) - Smoothing Dialogue States for Open Conversational Machine Reading [70.83783364292438]
We propose an effective gating strategy by smoothing the two dialogue states in only one decoder and bridge decision making and question generation.
Experiments on the OR-ShARC dataset show the effectiveness of our method, which achieves new state-of-the-art results.
arXiv Detail & Related papers (2021-08-28T08:04:28Z) - Discern: Discourse-Aware Entailment Reasoning Network for Conversational
Machine Reading [157.14821839576678]
Discern is a discourse-aware entailment reasoning network to strengthen the connection and enhance the understanding for both document and dialog.
Our experiments show that Discern achieves state-of-the-art results of 78.3% macro-averaged accuracy on decision making and 64.0 BLEU1 on follow-up question generation.
arXiv Detail & Related papers (2020-10-05T07:49:51Z) - A Compare Aggregate Transformer for Understanding Document-grounded
Dialogue [27.04964963480175]
We propose a Compare Aggregate Transformer (CAT) to jointly denoise the dialogue context and aggregate the document information for response generation.
Experimental results on the CMUDoG dataset show that the proposed CAT model outperforms the state-of-the-art approach and strong baselines.
arXiv Detail & Related papers (2020-10-01T03:44:44Z) - Tradeoffs in Sentence Selection Techniques for Open-Domain Question
Answering [54.541952928070344]
We describe two groups of models for sentence selection: QA-based approaches, which run a full-fledged QA system to identify answer candidates, and retrieval-based models, which find parts of each passage specifically related to each question.
We show that very lightweight QA models can do well at this task, but retrieval-based models are faster still.
arXiv Detail & Related papers (2020-09-18T23:39:15Z) - Multi-Stage Conversational Passage Retrieval: An Approach to Fusing Term
Importance Estimation and Neural Query Rewriting [56.268862325167575]
We tackle conversational passage retrieval (ConvPR) with query reformulation integrated into a multi-stage ad-hoc IR system.
We propose two conversational query reformulation (CQR) methods: (1) term importance estimation and (2) neural query rewriting.
For the former, we expand conversational queries using important terms extracted from the conversational context with frequency-based signals.
For the latter, we reformulate conversational queries into natural, standalone, human-understandable queries with a pretrained sequence-tosequence model.
arXiv Detail & Related papers (2020-05-05T14:30:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.