Controlled Randomness Improves the Performance of Transformer Models
- URL: http://arxiv.org/abs/2310.13526v1
- Date: Fri, 20 Oct 2023 14:12:55 GMT
- Title: Controlled Randomness Improves the Performance of Transformer Models
- Authors: Tobias Deu{\ss}er, Cong Zhao, Wolfgang Kr\"amer, David Leonhard,
Christian Bauckhage, Rafet Sifa
- Abstract summary: We introduce controlled randomness, i.e. noise, into the training process to improve fine-tuning language models.
We find that adding such noise can improve the performance in our two downstream tasks of joint named entity recognition and relation extraction and text summarization.
- Score: 4.678970068275123
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: During the pre-training step of natural language models, the main objective
is to learn a general representation of the pre-training dataset, usually
requiring large amounts of textual data to capture the complexity and diversity
of natural language. Contrasting this, in most cases, the size of the data
available to solve the specific downstream task is often dwarfed by the
aforementioned pre-training dataset, especially in domains where data is
scarce. We introduce controlled randomness, i.e. noise, into the training
process to improve fine-tuning language models and explore the performance of
targeted noise in addition to the parameters of these models. We find that
adding such noise can improve the performance in our two downstream tasks of
joint named entity recognition and relation extraction and text summarization.
Related papers
- Contextual Biasing to Improve Domain-specific Custom Vocabulary Audio Transcription without Explicit Fine-Tuning of Whisper Model [0.0]
OpenAI's Whisper Automated Speech Recognition model excels in generalizing across diverse datasets and domains.
We propose a method to enhance transcription accuracy without explicit fine-tuning or altering model parameters.
arXiv Detail & Related papers (2024-10-24T01:58:11Z) - Learning with Noisy Foundation Models [95.50968225050012]
This paper is the first work to comprehensively understand and analyze the nature of noise in pre-training datasets.
We propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization.
arXiv Detail & Related papers (2024-03-11T16:22:41Z) - Multi-Scales Data Augmentation Approach In Natural Language Inference
For Artifacts Mitigation And Pre-Trained Model Optimization [0.0]
We provide a variety of techniques for analyzing and locating dataset artifacts inside the crowdsourced Stanford Natural Language Inference corpus.
To mitigate dataset artifacts, we employ a unique multi-scale data augmentation technique with two distinct frameworks.
Our combination method enhances our model's resistance to perturbation testing, enabling it to continuously outperform the pre-trained baseline.
arXiv Detail & Related papers (2022-12-16T23:37:44Z) - Improving Pre-trained Language Model Fine-tuning with Noise Stability
Regularization [94.4409074435894]
We propose a novel and effective fine-tuning framework, named Layerwise Noise Stability Regularization (LNSR)
Specifically, we propose to inject the standard Gaussian noise and regularize hidden representations of the fine-tuned model.
We demonstrate the advantages of the proposed method over other state-of-the-art algorithms including L2-SP, Mixout and SMART.
arXiv Detail & Related papers (2022-06-12T04:42:49Z) - A Generative Language Model for Few-shot Aspect-Based Sentiment Analysis [90.24921443175514]
We focus on aspect-based sentiment analysis, which involves extracting aspect term, category, and predicting their corresponding polarities.
We propose to reformulate the extraction and prediction tasks into the sequence generation task, using a generative language model with unidirectional attention.
Our approach outperforms the previous state-of-the-art (based on BERT) on average performance by a large margins in few-shot and full-shot settings.
arXiv Detail & Related papers (2022-04-11T18:31:53Z) - Improving Classifier Training Efficiency for Automatic Cyberbullying
Detection with Feature Density [58.64907136562178]
We study the effectiveness of Feature Density (FD) using different linguistically-backed feature preprocessing methods.
We hypothesise that estimating dataset complexity allows for the reduction of the number of required experiments.
The difference in linguistic complexity of datasets allows us to additionally discuss the efficacy of linguistically-backed word preprocessing.
arXiv Detail & Related papers (2021-11-02T15:48:28Z) - Improving Commonsense Causal Reasoning by Adversarial Training and Data
Augmentation [14.92157586545743]
This paper presents a number of techniques for making models more robust in the domain of causal reasoning.
We show a statistically significant improvement on performance and on both datasets, even with only a small number of additionally generated data points.
arXiv Detail & Related papers (2021-01-13T09:55:29Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
We propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting.
Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking.
We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair and the ParaNMT datasets.
arXiv Detail & Related papers (2020-10-24T11:55:28Z) - Unnatural Language Processing: Bridging the Gap Between Synthetic and
Natural Language Data [37.542036032277466]
We introduce a technique for -simulation-to-real'' transfer in language understanding problems.
Our approach matches or outperforms state-of-the-art models trained on natural language data in several domains.
arXiv Detail & Related papers (2020-04-28T16:41:00Z) - Improving Multi-Turn Response Selection Models with Complementary
Last-Utterance Selection by Instance Weighting [84.9716460244444]
We consider utilizing the underlying correlation in the data resource itself to derive different kinds of supervision signals.
We conduct extensive experiments in two public datasets and obtain significant improvement in both datasets.
arXiv Detail & Related papers (2020-02-18T06:29:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.