Retrieval-Augmented Neural Response Generation Using Logical Reasoning
and Relevance Scoring
- URL: http://arxiv.org/abs/2310.13566v1
- Date: Fri, 20 Oct 2023 15:05:18 GMT
- Title: Retrieval-Augmented Neural Response Generation Using Logical Reasoning
and Relevance Scoring
- Authors: Nicholas Thomas Walker, Stefan Ultes, Pierre Lison
- Abstract summary: This paper presents a novel approach to knowledge-grounded response generation.
It combines retrieval-augmented language models with logical reasoning.
Experimental results show that the combination of (probabilistic) logical reasoning with conversational relevance scoring does increase both the factuality and fluency of the responses.
- Score: 2.3590037806133024
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Constructing responses in task-oriented dialogue systems typically relies on
information sources such the current dialogue state or external databases. This
paper presents a novel approach to knowledge-grounded response generation that
combines retrieval-augmented language models with logical reasoning. The
approach revolves around a knowledge graph representing the current dialogue
state and background information, and proceeds in three steps. The knowledge
graph is first enriched with logically derived facts inferred using
probabilistic logical programming. A neural model is then employed at each turn
to score the conversational relevance of each node and edge of this extended
graph. Finally, the elements with highest relevance scores are converted to a
natural language form, and are integrated into the prompt for the neural
conversational model employed to generate the system response.
We investigate the benefits of the proposed approach on two datasets (KVRET
and GraphWOZ) along with a human evaluation. Experimental results show that the
combination of (probabilistic) logical reasoning with conversational relevance
scoring does increase both the factuality and fluency of the responses.
Related papers
- Generative Subgraph Retrieval for Knowledge Graph-Grounded Dialog Generation [17.437568540883106]
We propose Dialog generation with Generative Subgraph Retrieval (DialogGSR)
DialogGSR retrieves relevant knowledge subgraphs by directly generating their token sequences on top of language models.
It achieves state-of-the-art performance in knowledge graph-grounded dialog generation, as demonstrated on OpenDialKG and KOMODIS datasets.
arXiv Detail & Related papers (2024-10-12T03:33:42Z) - PICK: Polished & Informed Candidate Scoring for Knowledge-Grounded
Dialogue Systems [59.1250765143521]
Current knowledge-grounded dialogue systems often fail to align the generated responses with human-preferred qualities.
We propose Polished & Informed Candidate Scoring (PICK), a generation re-scoring framework.
We demonstrate the effectiveness of PICK in generating responses that are more faithful while keeping them relevant to the dialogue history.
arXiv Detail & Related papers (2023-09-19T08:27:09Z) - CADGE: Context-Aware Dialogue Generation Enhanced with Graph-Structured Knowledge Aggregation [25.56539617837482]
A novel context-aware graph-attention model (Context-aware GAT) is proposed.
It assimilates global features from relevant knowledge graphs through a context-enhanced knowledge aggregation mechanism.
Empirical results demonstrate that our framework outperforms conventional GNN-based language models in terms of performance.
arXiv Detail & Related papers (2023-05-10T16:31:35Z) - PK-Chat: Pointer Network Guided Knowledge Driven Generative Dialogue
Model [79.64376762489164]
PK-Chat is a Pointer network guided generative dialogue model, incorporating a unified pretrained language model and a pointer network over knowledge graphs.
The words generated by PK-Chat in the dialogue are derived from the prediction of word lists and the direct prediction of the external knowledge graph knowledge.
Based on the PK-Chat, a dialogue system is built for academic scenarios in the case of geosciences.
arXiv Detail & Related papers (2023-04-02T18:23:13Z) - Emotion Recognition in Conversation using Probabilistic Soft Logic [17.62924003652853]
emotion recognition in conversation (ERC) is a sub-field of emotion recognition that focuses on conversations that contain two or more utterances.
We implement our approach in a framework called Probabilistic Soft Logic (PSL), a declarative templating language.
PSL provides functionality for the incorporation of results from neural models into PSL models.
We compare our method with state-of-the-art purely neural ERC systems, and see almost a 20% improvement.
arXiv Detail & Related papers (2022-07-14T23:59:06Z) - Learning Reasoning Paths over Semantic Graphs for Video-grounded
Dialogues [73.04906599884868]
We propose a novel framework of Reasoning Paths in Dialogue Context (PDC)
PDC model discovers information flows among dialogue turns through a semantic graph constructed based on lexical components in each question and answer.
Our model sequentially processes both visual and textual information through this reasoning path and the propagated features are used to generate the answer.
arXiv Detail & Related papers (2021-03-01T07:39:26Z) - GRADE: Automatic Graph-Enhanced Coherence Metric for Evaluating
Open-Domain Dialogue Systems [133.13117064357425]
We propose a new evaluation metric GRADE, which stands for Graph-enhanced Representations for Automatic Dialogue Evaluation.
Specifically, GRADE incorporates both coarse-grained utterance-level contextualized representations and fine-grained topic-level graph representations to evaluate dialogue coherence.
Experimental results show that our GRADE significantly outperforms other state-of-the-art metrics on measuring diverse dialogue models.
arXiv Detail & Related papers (2020-10-08T14:07:32Z) - GraphDialog: Integrating Graph Knowledge into End-to-End Task-Oriented
Dialogue Systems [9.560436630775762]
End-to-end task-oriented dialogue systems aim to generate system responses directly from plain text inputs.
One is how to effectively incorporate external knowledge bases (KBs) into the learning framework; the other is how to accurately capture the semantics of dialogue history.
We address these two challenges by exploiting the graph structural information in the knowledge base and in the dependency parsing tree of the dialogue.
arXiv Detail & Related papers (2020-10-04T00:04:40Z) - Ranking Enhanced Dialogue Generation [77.8321855074999]
How to effectively utilize the dialogue history is a crucial problem in multi-turn dialogue generation.
Previous works usually employ various neural network architectures to model the history.
This paper proposes a Ranking Enhanced Dialogue generation framework.
arXiv Detail & Related papers (2020-08-13T01:49:56Z) - A Heterogeneous Graph with Factual, Temporal and Logical Knowledge for
Question Answering Over Dynamic Contexts [81.4757750425247]
We study question answering over a dynamic textual environment.
We develop a graph neural network over the constructed graph, and train the model in an end-to-end manner.
arXiv Detail & Related papers (2020-04-25T04:53:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.