Inter-Scale Dependency Modeling for Skin Lesion Segmentation with
Transformer-based Networks
- URL: http://arxiv.org/abs/2310.13727v1
- Date: Fri, 20 Oct 2023 16:20:25 GMT
- Title: Inter-Scale Dependency Modeling for Skin Lesion Segmentation with
Transformer-based Networks
- Authors: Sania Eskandari, Janet Lumpp
- Abstract summary: Melanoma is a dangerous form of skin cancer caused by the abnormal growth of skin cells.
FCN approaches, including the U-Net architecture, can automatically segment skin lesions to aid diagnosis.
The symmetrical U-Net model has shown outstanding results, but its use of a convolutional operation limits its ability to capture long-range dependencies.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Melanoma is a dangerous form of skin cancer caused by the abnormal growth of
skin cells. Fully Convolutional Network (FCN) approaches, including the U-Net
architecture, can automatically segment skin lesions to aid diagnosis. The
symmetrical U-Net model has shown outstanding results, but its use of a
convolutional operation limits its ability to capture long-range dependencies,
which are essential for accurate medical image segmentation. In addition, the
U-shaped structure suffers from the semantic gaps between the encoder and
decoder. In this study, we developed and evaluated a U-shaped hierarchical
Transformer-based structure for skin lesion segmentation while we proposed an
Inter-scale Context Fusion (ISCF) to utilize the attention correlations in each
stage of the encoder to adaptively combine the contexts coming from each stage
to hinder the semantic gaps. The preliminary results of the skin lesion
segmentation benchmark endorse the applicability and efficacy of the ISCF
module.
Related papers
- Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
We propose a hybrid network via the combination of convolution neural network (CNN) and transformer layers.
The experimental results on private and public DCE-MRI datasets demonstrate that the proposed hybrid network superior performance than the state-of-the-art methods.
arXiv Detail & Related papers (2024-08-11T15:46:00Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Skin Lesion Segmentation Improved by Transformer-based Networks with
Inter-scale Dependency Modeling [0.0]
Melanoma is a dangerous type of skin cancer resulting from abnormal skin cell growth.
The symmetrical U-Net model's reliance on convolutional operations hinders its ability to capture long-range dependencies.
Several Transformer-based U-Net topologies have recently been created to overcome this limitation.
arXiv Detail & Related papers (2023-10-20T15:53:51Z) - Generative Adversarial Networks based Skin Lesion Segmentation [7.9234173309439715]
We propose a novel adversarial learning-based framework called Efficient-GAN that uses an unsupervised generative network to generate accurate lesion masks.
It outperforms the current state-of-the-art skin lesion segmentation approaches with a Dice coefficient, Jaccard similarity, and Accuracy of 90.1%, 83.6%, and 94.5%, respectively.
We also design a lightweight segmentation framework (MGAN) that achieves comparable performance as EGAN but with an order of magnitude lower number of training parameters.
arXiv Detail & Related papers (2023-05-29T15:51:31Z) - LCAUnet: A skin lesion segmentation network with enhanced edge and body
fusion [4.819821513256158]
LCAUnet is proposed to improve the ability of complementary representation with fusion of edge and body features.
Experiments on public available dataset ISIC 2017, ISIC 2018, and PH2 demonstrate that LCAUnet outperforms most state-of-the-art methods.
arXiv Detail & Related papers (2023-05-01T14:05:53Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Attention Swin U-Net: Cross-Contextual Attention Mechanism for Skin
Lesion Segmentation [4.320393382724066]
We propose Att-SwinU-Net, an attention-based Swin U-Net extension, for medical image segmentation.
We argue that the classical concatenation operation utilized in the skip connection path can be further improved by incorporating an attention mechanism.
arXiv Detail & Related papers (2022-10-30T17:41:35Z) - TransUNet: Transformers Make Strong Encoders for Medical Image
Segmentation [78.01570371790669]
Medical image segmentation is an essential prerequisite for developing healthcare systems.
On various medical image segmentation tasks, the u-shaped architecture, also known as U-Net, has become the de-facto standard.
We propose TransUNet, which merits both Transformers and U-Net, as a strong alternative for medical image segmentation.
arXiv Detail & Related papers (2021-02-08T16:10:50Z) - DONet: Dual Objective Networks for Skin Lesion Segmentation [77.9806410198298]
We propose a simple yet effective framework, named Dual Objective Networks (DONet), to improve the skin lesion segmentation.
Our DONet adopts two symmetric decoders to produce different predictions for approaching different objectives.
To address the challenge of large variety of lesion scales and shapes in dermoscopic images, we additionally propose a recurrent context encoding module (RCEM)
arXiv Detail & Related papers (2020-08-19T06:02:46Z) - Collaborative Boundary-aware Context Encoding Networks for Error Map
Prediction [65.44752447868626]
We propose collaborative boundaryaware context encoding networks called AEP-Net for error prediction task.
Specifically, we propose a collaborative feature transformation branch for better feature fusion between images and masks, and precise localization of error regions.
The AEP-Net achieves an average DSC of 0.8358, 0.8164 for error prediction task, and shows a high Pearson correlation coefficient of 0.9873.
arXiv Detail & Related papers (2020-06-25T12:42:01Z) - Cascaded Context Enhancement Network for Automatic Skin Lesion
Segmentation [10.648218637920035]
We formulate a cascaded context enhancement neural network for automatic skin lesion segmentation.
A new context aggregation module with a gate-based information integration approach is proposed.
We evaluate our approach on four public skin dermoscopy image datasets.
arXiv Detail & Related papers (2020-04-17T08:25:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.