Towards dialogue based, computer aided software requirements elicitation
- URL: http://arxiv.org/abs/2310.13953v1
- Date: Sat, 21 Oct 2023 09:12:24 GMT
- Title: Towards dialogue based, computer aided software requirements elicitation
- Authors: Vasiliy Seibert
- Abstract summary: This paper proposes an interaction blueprint that aims for dialogue based, computer aided software requirements analysis.
Compared to mere model extraction approaches, this interaction blueprint encourages individuality, creativity and genuine compromise.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Several approaches have been presented, which aim to extract models from
natural language specifications. These approaches have inherent weaknesses for
they assume an initial problem understanding that is perfect, and they leave no
room for feedback. Motivated by real-world collaboration settings between
requirements engineers and customers, this paper proposes an interaction
blueprint that aims for dialogue based, computer aided software requirements
analysis. Compared to mere model extraction approaches, this interaction
blueprint encourages individuality, creativity and genuine compromise. A
simplistic Experiment was conducted to showcase the general idea. This paper
discusses the experiment as well as the proposed interaction blueprint and
argues, that advancements in natural language processing and generative AI
might lead to significant progress in a foreseeable future. However, for that,
there is a need to move away from a magical black box expectation and instead
moving towards a dialogue based approach that recognizes the individuality that
is an undeniable part of requirements engineering.
Related papers
- A Novel Idea Generation Tool using a Structured Conversational AI (CAI) System [0.0]
This paper presents a novel conversational AI-enabled active ideation interface as a creative idea-generation tool to assist novice designers.
It is a dynamic, interactive, and contextually responsive approach, actively involving a large language model (LLM) from the domain of natural language processing (NLP) in artificial intelligence (AI)
Integrating such AI models with ideation creates what we refer to as an Active Ideation scenario, which helps foster continuous dialogue-based interaction, context-sensitive conversation, and prolific idea generation.
arXiv Detail & Related papers (2024-09-09T16:02:27Z) - Prompt-to-OS (P2OS): Revolutionizing Operating Systems and
Human-Computer Interaction with Integrated AI Generative Models [10.892991111926573]
We present a paradigm for human-computer interaction that revolutionizes the traditional notion of an operating system.
Within this innovative framework, user requests issued to the machine are handled by an interconnected ecosystem of generative AI models.
This visionary concept raises significant challenges, including privacy, security, trustability, and the ethical use of generative models.
arXiv Detail & Related papers (2023-10-07T17:16:34Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
Vision systems to see and reason about the compositional nature of visual scenes are fundamental to understanding our world.
The models learned to bridge the gap between such modalities coupled with large-scale training data facilitate contextual reasoning, generalization, and prompt capabilities at test time.
The output of such models can be modified through human-provided prompts without retraining, e.g., segmenting a particular object by providing a bounding box, having interactive dialogues by asking questions about an image or video scene or manipulating the robot's behavior through language instructions.
arXiv Detail & Related papers (2023-07-25T17:59:18Z) - Interactive Natural Language Processing [67.87925315773924]
Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP.
This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept.
arXiv Detail & Related papers (2023-05-22T17:18:29Z) - Controllable Mixed-Initiative Dialogue Generation through Prompting [50.03458333265885]
Mixed-initiative dialogue tasks involve repeated exchanges of information and conversational control.
Agents gain control by generating responses that follow particular dialogue intents or strategies, prescribed by a policy planner.
Standard approach has been fine-tuning pre-trained language models to perform generation conditioned on these intents.
We instead prompt large language models as a drop-in replacement to fine-tuning on conditional generation.
arXiv Detail & Related papers (2023-05-06T23:11:25Z) - Channel-aware Decoupling Network for Multi-turn Dialogue Comprehension [81.47133615169203]
We propose compositional learning for holistic interaction across utterances beyond the sequential contextualization from PrLMs.
We employ domain-adaptive training strategies to help the model adapt to the dialogue domains.
Experimental results show that our method substantially boosts the strong PrLM baselines in four public benchmark datasets.
arXiv Detail & Related papers (2023-01-10T13:18:25Z) - Improving a sequence-to-sequence nlp model using a reinforcement
learning policy algorithm [0.0]
Current neural network models of dialogue generation show great promise for generating answers for chatty agents.
But they are short-sighted in that they predict utterances one at a time while disregarding their impact on future outcomes.
This work commemorates a preliminary step toward developing a neural conversational model based on the long-term success of dialogues.
arXiv Detail & Related papers (2022-12-28T22:46:57Z) - Enabling Harmonious Human-Machine Interaction with Visual-Context
Augmented Dialogue System: A Review [40.49926141538684]
Visual Context Augmented Dialogue System (VAD) has the potential to communicate with humans by perceiving and understanding multimodal information.
VAD possesses the potential to generate engaging and context-aware responses.
arXiv Detail & Related papers (2022-07-02T09:31:37Z) - Mediators: Conversational Agents Explaining NLP Model Behavior [2.7878644615660457]
The human-centric explainable artificial intelligence (HCXAI) community has raised the need for framing the explanation process as a conversation between human and machine.
We establish desiderata for Mediators, text-based conversational agents capable of explaining the behavior of neural models interactively using natural language.
arXiv Detail & Related papers (2022-06-13T10:31:18Z) - Rethinking Explainability as a Dialogue: A Practitioner's Perspective [57.87089539718344]
We ask doctors, healthcare professionals, and policymakers about their needs and desires for explanations.
Our study indicates that decision-makers would strongly prefer interactive explanations in the form of natural language dialogues.
Considering these needs, we outline a set of five principles researchers should follow when designing interactive explanations.
arXiv Detail & Related papers (2022-02-03T22:17:21Z) - You Impress Me: Dialogue Generation via Mutual Persona Perception [62.89449096369027]
The research in cognitive science suggests that understanding is an essential signal for a high-quality chit-chat conversation.
Motivated by this, we propose P2 Bot, a transmitter-receiver based framework with the aim of explicitly modeling understanding.
arXiv Detail & Related papers (2020-04-11T12:51:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.