Adaptive, Doubly Optimal No-Regret Learning in Strongly Monotone and Exp-Concave Games with Gradient Feedback
- URL: http://arxiv.org/abs/2310.14085v4
- Date: Thu, 28 Mar 2024 19:37:02 GMT
- Title: Adaptive, Doubly Optimal No-Regret Learning in Strongly Monotone and Exp-Concave Games with Gradient Feedback
- Authors: Michael I. Jordan, Tianyi Lin, Zhengyuan Zhou,
- Abstract summary: Online gradient descent (OGD) is well known to be doubly optimal under strong convexity or monotonicity assumptions.
In this paper, we design a fully adaptive OGD algorithm, textsfAdaOGD, that does not require a priori knowledge of these parameters.
- Score: 75.29048190099523
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Online gradient descent (OGD) is well known to be doubly optimal under strong convexity or monotonicity assumptions: (1) in the single-agent setting, it achieves an optimal regret of $\Theta(\log T)$ for strongly convex cost functions; and (2) in the multi-agent setting of strongly monotone games, with each agent employing OGD, we obtain last-iterate convergence of the joint action to a unique Nash equilibrium at an optimal rate of $\Theta(\frac{1}{T})$. While these finite-time guarantees highlight its merits, OGD has the drawback that it requires knowing the strong convexity/monotonicity parameters. In this paper, we design a fully adaptive OGD algorithm, \textsf{AdaOGD}, that does not require a priori knowledge of these parameters. In the single-agent setting, our algorithm achieves $O(\log^2(T))$ regret under strong convexity, which is optimal up to a log factor. Further, if each agent employs \textsf{AdaOGD} in strongly monotone games, the joint action converges in a last-iterate sense to a unique Nash equilibrium at a rate of $O(\frac{\log^3 T}{T})$, again optimal up to log factors. We illustrate our algorithms in a learning version of the classical newsvendor problem, where due to lost sales, only (noisy) gradient feedback can be observed. Our results immediately yield the first feasible and near-optimal algorithm for both the single-retailer and multi-retailer settings. We also extend our results to the more general setting of exp-concave cost functions and games, using the online Newton step (ONS) algorithm.
Related papers
- Combinatorial Stochastic-Greedy Bandit [79.1700188160944]
We propose a novelgreedy bandit (SGB) algorithm for multi-armed bandit problems when no extra information other than the joint reward of the selected set of $n$ arms at each time $tin [T]$ is observed.
SGB adopts an optimized-explore-then-commit approach and is specifically designed for scenarios with a large set of base arms.
arXiv Detail & Related papers (2023-12-13T11:08:25Z) - Universal Online Learning with Gradient Variations: A Multi-layer Online Ensemble Approach [57.92727189589498]
We propose an online convex optimization approach with two different levels of adaptivity.
We obtain $mathcalO(log V_T)$, $mathcalO(d log V_T)$ and $hatmathcalO(sqrtV_T)$ regret bounds for strongly convex, exp-concave and convex loss functions.
arXiv Detail & Related papers (2023-07-17T09:55:35Z) - Stochastic Nonsmooth Convex Optimization with Heavy-Tailed Noises:
High-Probability Bound, In-Expectation Rate and Initial Distance Adaptation [22.758674468435302]
In a heavy-tailed noise regime, the difference between the gradient and the true rate is assumed to have a finite $p-th moment.
This paper provides a comprehensive analysis of nonsmooth convex optimization with heavy-tailed noises.
arXiv Detail & Related papers (2023-03-22T03:05:28Z) - Accelerated Single-Call Methods for Constrained Min-Max Optimization [5.266784779001398]
Existing methods either require two gradient calls or two projections in each iteration, which may costly in some applications.
In this paper, we first show that a variant of the Optimistic Gradient (RGOG) has a rich set of non-comonrate min-max convergence rate problems.
Our convergence rates hold for standard measures such as and the natural and the natural.
arXiv Detail & Related papers (2022-10-06T17:50:42Z) - Restricted Strong Convexity of Deep Learning Models with Smooth
Activations [31.003601717265006]
We study the problem of optimization of deep learning models with smooth activation functions.
We introduce a new analysis of optimization based on Restricted Strong Convexity (RSC)
Ours is the first result on establishing geometric convergence of GD based on RSC for deep learning models.
arXiv Detail & Related papers (2022-09-29T21:24:26Z) - The Power of Regularization in Solving Extensive-Form Games [22.557806157585834]
We propose a series of new algorithms based on regularizing the payoff functions of the game.
In particular, we first show that dilated optimistic mirror descent (DOMD) can achieve a fast $tilde O(T)$ last-iterate convergence.
We also show that Reg-CFR, with a variant of optimistic mirror descent algorithm as regret-minimizer, can achieve $O(T1/4)$ best-iterate, and $O(T3/4)$ average-iterate convergence rate.
arXiv Detail & Related papers (2022-06-19T22:10:38Z) - Provably Efficient Convergence of Primal-Dual Actor-Critic with
Nonlinear Function Approximation [15.319335698574932]
We show the first efficient convergence result with primal-dual actor-critic with a convergence of $mathcalOleft ascent(Nright)Nright)$ under Polyian sampling.
Results on Open GymAI continuous control tasks.
arXiv Detail & Related papers (2022-02-28T15:16:23Z) - Near-Optimal No-Regret Learning for Correlated Equilibria in
Multi-Player General-Sum Games [104.74734408204749]
We show that if all agents in a multi-player general-sum normal-form game employ Optimistic Multiplicative Weights Update (OMWU), the external regret of every player is $O(textrmpolylog(T))$ after $T$ repetitions of the game.
We extend their result from external regret to internal regret and swap regret, thereby establishing uncoupled learning dynamics that converge to an approximate correlated equilibrium.
arXiv Detail & Related papers (2021-11-11T01:19:53Z) - Linear Last-iterate Convergence in Constrained Saddle-point Optimization [48.44657553192801]
We significantly expand the understanding of last-rate uniqueness for Optimistic Gradient Descent Ascent (OGDA) and Optimistic Multiplicative Weights Update (OMWU)
We show that when the equilibrium is unique, linear lastiterate convergence is achieved with a learning rate whose value is set to a universal constant.
We show that bilinear games over any polytope satisfy this condition and OGDA converges exponentially fast even without the unique equilibrium assumption.
arXiv Detail & Related papers (2020-06-16T20:53:04Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
Adaptive algorithms perform gradient updates using the history of gradients and are ubiquitous in training deep neural networks.
In this paper we analyze a variant of OptimisticOA algorithm for nonconcave minmax problems.
Our experiments show that adaptive GAN non-adaptive gradient algorithms can be observed empirically.
arXiv Detail & Related papers (2019-12-26T22:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.