One Model for All: Large Language Models are Domain-Agnostic Recommendation Systems
- URL: http://arxiv.org/abs/2310.14304v2
- Date: Wed, 19 Feb 2025 02:43:51 GMT
- Title: One Model for All: Large Language Models are Domain-Agnostic Recommendation Systems
- Authors: Zuoli Tang, Zhaoxin Huan, Zihao Li, Xiaolu Zhang, Jun Hu, Chilin Fu, Jun Zhou, Lixin Zou, Chenliang Li,
- Abstract summary: This paper introduces a framework that utilizes pre-trained large language models (LLMs) for domain-agnostic recommendation.
Specifically, we mix user's behaviors from multiple domains and item titles into a sentence, then use LLMs for generating user and item representations.
- Score: 43.79001185418127
- License:
- Abstract: Sequential recommendation systems aim to predict users' next likely interaction based on their history. However, these systems face data sparsity and cold-start problems. Utilizing data from other domains, known as multi-domain methods, is useful for alleviating these problems. However, traditional multi-domain methods rely on meaningless ID-based item representation, which makes it difficult to align items with similar meanings from different domains, yielding sup-optimal knowledge transfer. This paper introduces LLM-Rec, a framework that utilizes pre-trained large language models (LLMs) for domain-agnostic recommendation. Specifically, we mix user's behaviors from multiple domains and concatenate item titles into a sentence, then use LLMs for generating user and item representations. By mixing behaviors across different domains, we can exploit the knowledge encoded in LLMs to bridge the semantic across over multi-domain behaviors, thus obtaining semantically rich representations and improving performance in all domains. Furthermore, we explore the underlying reasons why LLMs are effective and investigate whether LLMs can understand the semantic correlations as the recommendation model, and if advanced techniques like scaling laws in NLP also work in recommendations. We conduct extensive experiments with LLMs ranging from 40M to 6.7B to answer the above questions and to verify the effectiveness of LLM-Rec in multi-domain recommendation.
Related papers
- MoLoRec: A Generalizable and Efficient Framework for LLM-Based Recommendation [48.27058675713025]
We propose a generalizable and efficient LLM-based recommendation framework MoLoRec.
Our approach starts by parameter-efficient fine-tuning a domain-general module with general recommendation instruction data.
We provide approaches to integrate the above domain-general part and domain-specific part with parameters mixture.
arXiv Detail & Related papers (2025-02-12T10:24:22Z) - Exploring User Retrieval Integration towards Large Language Models for Cross-Domain Sequential Recommendation [66.72195610471624]
Cross-Domain Sequential Recommendation aims to mine and transfer users' sequential preferences across different domains.
We propose a novel framework named URLLM, which aims to improve the CDSR performance by exploring the User Retrieval approach.
arXiv Detail & Related papers (2024-06-05T09:19:54Z) - BLADE: Enhancing Black-box Large Language Models with Small Domain-Specific Models [56.89958793648104]
Large Language Models (LLMs) are versatile and capable of addressing a diverse range of tasks.
Previous approaches either conduct continuous pre-training with domain-specific data or employ retrieval augmentation to support general LLMs.
We present a novel framework named BLADE, which enhances Black-box LArge language models with small Domain-spEcific models.
arXiv Detail & Related papers (2024-03-27T08:57:21Z) - Knowledge Plugins: Enhancing Large Language Models for Domain-Specific
Recommendations [50.81844184210381]
We propose a general paradigm that augments large language models with DOmain-specific KnowledgE to enhance their performance on practical applications, namely DOKE.
This paradigm relies on a domain knowledge extractor, working in three steps: 1) preparing effective knowledge for the task; 2) selecting the knowledge for each specific sample; and 3) expressing the knowledge in an LLM-understandable way.
arXiv Detail & Related papers (2023-11-16T07:09:38Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
We introduce an efficient framework called textbfInteRecAgent, which employs LLMs as the brain and recommender models as tools.
InteRecAgent achieves satisfying performance as a conversational recommender system, outperforming general-purpose LLMs.
arXiv Detail & Related papers (2023-08-31T07:36:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.