Learning Interpretable Rules for Scalable Data Representation and
Classification
- URL: http://arxiv.org/abs/2310.14336v3
- Date: Tue, 30 Jan 2024 03:21:30 GMT
- Title: Learning Interpretable Rules for Scalable Data Representation and
Classification
- Authors: Zhuo Wang, Wei Zhang, Ning Liu, Jianyong Wang
- Abstract summary: Rule-based Learner Representation (RRL) learns interpretable non-fuzzy rules for data representation and classification.
RRL can be easily adjusted to obtain a trade-off between classification accuracy and model complexity for different scenarios.
- Score: 11.393431987232425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rule-based models, e.g., decision trees, are widely used in scenarios
demanding high model interpretability for their transparent inner structures
and good model expressivity. However, rule-based models are hard to optimize,
especially on large data sets, due to their discrete parameters and structures.
Ensemble methods and fuzzy/soft rules are commonly used to improve performance,
but they sacrifice the model interpretability. To obtain both good scalability
and interpretability, we propose a new classifier, named Rule-based
Representation Learner (RRL), that automatically learns interpretable non-fuzzy
rules for data representation and classification. To train the
non-differentiable RRL effectively, we project it to a continuous space and
propose a novel training method, called Gradient Grafting, that can directly
optimize the discrete model using gradient descent. A novel design of logical
activation functions is also devised to increase the scalability of RRL and
enable it to discretize the continuous features end-to-end. Exhaustive
experiments on ten small and four large data sets show that RRL outperforms the
competitive interpretable approaches and can be easily adjusted to obtain a
trade-off between classification accuracy and model complexity for different
scenarios. Our code is available at: https://github.com/12wang3/rrl.
Related papers
- Exploring Beyond Logits: Hierarchical Dynamic Labeling Based on Embeddings for Semi-Supervised Classification [49.09505771145326]
We propose a Hierarchical Dynamic Labeling (HDL) algorithm that does not depend on model predictions and utilizes image embeddings to generate sample labels.
Our approach has the potential to change the paradigm of pseudo-label generation in semi-supervised learning.
arXiv Detail & Related papers (2024-04-26T06:00:27Z) - Deep Explainable Learning with Graph Based Data Assessing and Rule
Reasoning [4.369058206183195]
We propose an end-to-end deep explainable learning approach that combines the advantage of deep model in noise handling and expert rule-based interpretability.
The proposed method is tested in an industry production system, showing comparable prediction accuracy, much higher generalization stability and better interpretability.
arXiv Detail & Related papers (2022-11-09T05:58:56Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - Scalable Rule-Based Representation Learning for Interpretable
Classification [12.736847587988853]
Rule-based Learner Representation (RRL) learns interpretable non-fuzzy rules for data representation and classification.
RRL can be easily adjusted to obtain a trade-off between classification accuracy and model complexity for different scenarios.
arXiv Detail & Related papers (2021-09-30T13:07:42Z) - Understanding Dynamics of Nonlinear Representation Learning and Its
Application [12.697842097171119]
We study the dynamics of implicit nonlinear representation learning.
We show that the data-architecture alignment condition is sufficient for the global convergence.
We derive a new training framework, which satisfies the data-architecture alignment condition without assuming it.
arXiv Detail & Related papers (2021-06-28T16:31:30Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN) is a tensor-based nonlinear learning model that imposes Canonical/Polyadic decomposition on its parameters.
First, it handles inputs as multilinear arrays, bypassing the need for vectorization, and can thus fully exploit the structural information along every data dimension.
We establish the universal approximation and learnability properties of Rank-R FNN, and we validate its performance on real-world hyperspectral datasets.
arXiv Detail & Related papers (2021-04-11T16:37:32Z) - Distilling Interpretable Models into Human-Readable Code [71.11328360614479]
Human-readability is an important and desirable standard for machine-learned model interpretability.
We propose to train interpretable models using conventional methods, and then distill them into concise, human-readable code.
We describe a piecewise-linear curve-fitting algorithm that produces high-quality results efficiently and reliably across a broad range of use cases.
arXiv Detail & Related papers (2021-01-21T01:46:36Z) - Autoregressive Score Matching [113.4502004812927]
We propose autoregressive conditional score models (AR-CSM) where we parameterize the joint distribution in terms of the derivatives of univariable log-conditionals (scores)
For AR-CSM models, this divergence between data and model distributions can be computed and optimized efficiently, requiring no expensive sampling or adversarial training.
We show with extensive experimental results that it can be applied to density estimation on synthetic data, image generation, image denoising, and training latent variable models with implicit encoders.
arXiv Detail & Related papers (2020-10-24T07:01:24Z) - Interpretable Learning-to-Rank with Generalized Additive Models [78.42800966500374]
Interpretability of learning-to-rank models is a crucial yet relatively under-examined research area.
Recent progress on interpretable ranking models largely focuses on generating post-hoc explanations for existing black-box ranking models.
We lay the groundwork for intrinsically interpretable learning-to-rank by introducing generalized additive models (GAMs) into ranking tasks.
arXiv Detail & Related papers (2020-05-06T01:51:30Z) - Causality-aware counterfactual confounding adjustment for feature
representations learned by deep models [14.554818659491644]
Causal modeling has been recognized as a potential solution to many challenging problems in machine learning (ML)
We describe how a recently proposed counterfactual approach can still be used to deconfound the feature representations learned by deep neural network (DNN) models.
arXiv Detail & Related papers (2020-04-20T17:37:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.