Retrieval-Augmented Chain-of-Thought in Semi-structured Domains
- URL: http://arxiv.org/abs/2310.14435v1
- Date: Sun, 22 Oct 2023 22:45:14 GMT
- Title: Retrieval-Augmented Chain-of-Thought in Semi-structured Domains
- Authors: Vaibhav Mavi and Abulhair Saparov and Chen Zhao
- Abstract summary: Large language models (LLMs) have shown impressive language comprehension and in-context learning capabilities.
This study explores leveraging the semi-structured nature of legal and financial data to efficiently retrieve relevant context.
The resulting system outperforms contemporary models and also provides useful explanations for the answers.
- Score: 10.417698947670564
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Applying existing question answering (QA) systems to specialized domains like
law and finance presents challenges that necessitate domain expertise. Although
large language models (LLMs) have shown impressive language comprehension and
in-context learning capabilities, their inability to handle very long
inputs/contexts is well known. Tasks specific to these domains need significant
background knowledge, leading to contexts that can often exceed the maximum
length that existing LLMs can process. This study explores leveraging the
semi-structured nature of legal and financial data to efficiently retrieve
relevant context, enabling the use of LLMs for domain-specialized QA. The
resulting system outperforms contemporary models and also provides useful
explanations for the answers, encouraging the integration of LLMs into legal
and financial NLP systems for future research.
Related papers
- A Comprehensive Survey of Small Language Models in the Era of Large Language Models: Techniques, Enhancements, Applications, Collaboration with LLMs, and Trustworthiness [31.758459020683574]
Small Language Models (SLMs) are increasingly favored for their low inference latency, cost-effectiveness, efficient development, and easy customization and adaptability.
These models are particularly well-suited for resource-limited environments and domain knowledge acquisition.
We propose defining SLMs by their capability to perform specialized tasks and suitability for resource-constrained settings.
arXiv Detail & Related papers (2024-11-04T04:43:01Z) - Exploring Language Model Generalization in Low-Resource Extractive QA [57.14068405860034]
We investigate Extractive Question Answering (EQA) with Large Language Models (LLMs) under domain drift.
We devise a series of experiments to empirically explain the performance gap.
arXiv Detail & Related papers (2024-09-27T05:06:43Z) - Financial Knowledge Large Language Model [4.599537455808687]
We introduce IDEA-FinBench, an evaluation benchmark for assessing financial knowledge in large language models (LLMs)
We propose IDEA-FinKER, a framework designed to facilitate the rapid adaptation of general LLMs to the financial domain.
Finally, we present IDEA-FinQA, a financial question-answering system powered by LLMs.
arXiv Detail & Related papers (2024-06-29T08:26:49Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases.
We introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning.
Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks.
arXiv Detail & Related papers (2024-06-19T00:28:58Z) - A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges [60.546677053091685]
Large language models (LLMs) have unlocked novel opportunities for machine learning applications in the financial domain.
We explore the application of LLMs on various financial tasks, focusing on their potential to transform traditional practices and drive innovation.
We highlight this survey for categorizing the existing literature into key application areas, including linguistic tasks, sentiment analysis, financial time series, financial reasoning, agent-based modeling, and other applications.
arXiv Detail & Related papers (2024-06-15T16:11:35Z) - A Reality check of the benefits of LLM in business [1.9181612035055007]
Large language models (LLMs) have achieved remarkable performance in language understanding and generation tasks.
This paper thoroughly examines the usefulness and readiness of LLMs for business processes.
arXiv Detail & Related papers (2024-06-09T02:36:00Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
Large Language Models (LLMs) have demonstrated revolutionary abilities in language understanding and generation.
Retrieval-Augmented Generation (RAG) can offer reliable and up-to-date external knowledge.
RA-LLMs have emerged to harness external and authoritative knowledge bases, rather than relying on the model's internal knowledge.
arXiv Detail & Related papers (2024-05-10T02:48:45Z) - A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law [65.87885628115946]
Large language models (LLMs) are revolutionizing the landscapes of finance, healthcare, and law.
We highlight the instrumental role of LLMs in enhancing diagnostic and treatment methodologies in healthcare, innovating financial analytics, and refining legal interpretation and compliance strategies.
We critically examine the ethics for LLM applications in these fields, pointing out the existing ethical concerns and the need for transparent, fair, and robust AI systems.
arXiv Detail & Related papers (2024-05-02T22:43:02Z) - Fine-tuning and Utilization Methods of Domain-specific LLMs [0.0]
This study investigates approaches for fine-tuning and leveraging domain-specific LLMs.
It details dataset selection, preprocessing, model choice, and considerations crucial for LLM fine-tuning in finance.
The study explores the potential of LLMs in the financial domain, identifies limitations, and proposes directions for improvement.
arXiv Detail & Related papers (2024-01-01T06:22:04Z) - Domain Specialization as the Key to Make Large Language Models Disruptive: A Comprehensive Survey [100.24095818099522]
Large language models (LLMs) have significantly advanced the field of natural language processing (NLP)
They provide a highly useful, task-agnostic foundation for a wide range of applications.
However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles.
arXiv Detail & Related papers (2023-05-30T03:00:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.