Towards a Mechanistic Interpretation of Multi-Step Reasoning
Capabilities of Language Models
- URL: http://arxiv.org/abs/2310.14491v1
- Date: Mon, 23 Oct 2023 01:47:29 GMT
- Title: Towards a Mechanistic Interpretation of Multi-Step Reasoning
Capabilities of Language Models
- Authors: Yifan Hou, Jiaoda Li, Yu Fei, Alessandro Stolfo, Wangchunshu Zhou,
Guangtao Zeng, Antoine Bosselut, Mrinmaya Sachan
- Abstract summary: Language models (LMs) have strong multi-step (i.e., procedural) reasoning capabilities.
It is unclear whether LMs perform tasks by cheating with answers memorized from pretraining corpus, or, via a multi-step reasoning mechanism.
We show that MechanisticProbe is able to detect the information of the reasoning tree from the model's attentions for most examples.
- Score: 107.07851578154242
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent work has shown that language models (LMs) have strong multi-step
(i.e., procedural) reasoning capabilities. However, it is unclear whether LMs
perform these tasks by cheating with answers memorized from pretraining corpus,
or, via a multi-step reasoning mechanism. In this paper, we try to answer this
question by exploring a mechanistic interpretation of LMs for multi-step
reasoning tasks. Concretely, we hypothesize that the LM implicitly embeds a
reasoning tree resembling the correct reasoning process within it. We test this
hypothesis by introducing a new probing approach (called MechanisticProbe) that
recovers the reasoning tree from the model's attention patterns. We use our
probe to analyze two LMs: GPT-2 on a synthetic task (k-th smallest element),
and LLaMA on two simple language-based reasoning tasks (ProofWriter & AI2
Reasoning Challenge). We show that MechanisticProbe is able to detect the
information of the reasoning tree from the model's attentions for most
examples, suggesting that the LM indeed is going through a process of
multi-step reasoning within its architecture in many cases.
Related papers
- Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
We introduce a novel structure-oriented analysis method to help Large Language Models (LLMs) better understand a question.
To further improve the reliability in complex question-answering tasks, we propose a multi-agent reasoning system, Structure-oriented Autonomous Reasoning Agents (SARA)
Extensive experiments verify the effectiveness of the proposed reasoning system. Surprisingly, in some cases, the system even surpasses few-shot methods.
arXiv Detail & Related papers (2024-10-18T05:30:33Z) - First Heuristic Then Rational: Dynamic Use of Heuristics in Language Model Reasoning [26.732781911221636]
Multi-step reasoning instruction is widely adopted to explore better language performance.
We report on the systematic strategy that LMs employ in such a multi-step reasoning process.
arXiv Detail & Related papers (2024-06-23T11:11:46Z) - Distributional reasoning in LLMs: Parallel reasoning processes in multi-hop reasoning [8.609587510471943]
We introduce a novel and interpretable analysis of internal multi-hop reasoning processes in large language models.
We show that during inference, the middle layers of the network generate highly interpretable embeddings.
Our findings can help uncover the strategies that LLMs use to solve reasoning tasks, offering insights into the types of thought processes that can emerge from artificial intelligence.
arXiv Detail & Related papers (2024-06-19T21:36:40Z) - LogicBench: Towards Systematic Evaluation of Logical Reasoning Ability of Large Language Models [52.03659714625452]
Recently developed large language models (LLMs) have been shown to perform remarkably well on a wide range of language understanding tasks.
But, can they really "reason" over the natural language?
This question has been receiving significant research attention and many reasoning skills such as commonsense, numerical, and qualitative have been studied.
arXiv Detail & Related papers (2024-04-23T21:08:49Z) - Can Small Language Models Help Large Language Models Reason Better?: LM-Guided Chain-of-Thought [51.240387516059535]
We introduce a novel framework, LM-Guided CoT, that leverages a lightweight (i.e., 1B) language model (LM) for guiding a black-box large (i.e., >10B) LM in reasoning tasks.
We optimize the model through 1) knowledge distillation and 2) reinforcement learning from rationale-oriented and task-oriented reward signals.
arXiv Detail & Related papers (2024-04-04T12:46:37Z) - An Incomplete Loop: Deductive, Inductive, and Abductive Learning in Large Language Models [99.31449616860291]
Modern language models (LMs) can learn to perform new tasks in different ways.
In instruction following, the target task is described explicitly in natural language; in few-shot prompting, the task is specified implicitly.
In instruction inference, LMs are presented with in-context examples and are then prompted to generate a natural language task description.
arXiv Detail & Related papers (2024-04-03T19:31:56Z) - How to think step-by-step: A mechanistic understanding of chain-of-thought reasoning [44.02173413922695]
A lack of understanding prevails around the internal mechanisms of the models that facilitate Chain-of-Thought (CoT) prompting.
This work investigates the sub-structures within Large Language Models that manifest CoT reasoning from a point of view.
arXiv Detail & Related papers (2024-02-28T13:14:20Z) - Neuro-Symbolic Integration Brings Causal and Reliable Reasoning Proofs [95.07757789781213]
Two lines of approaches are adopted for complex reasoning with LLMs.
One line of work prompts LLMs with various reasoning structures, while the structural outputs can be naturally regarded as intermediate reasoning steps.
The other line of work adopt LLM-free declarative solvers to do the reasoning task, rendering higher reasoning accuracy but lacking interpretability due to the black-box nature of the solvers.
We present a simple extension to the latter line of work. Specifically, we showcase that the intermediate search logs generated by Prolog interpreters can be accessed and interpreted into human-readable reasoning.
arXiv Detail & Related papers (2023-11-16T11:26:21Z) - Language Models Are Greedy Reasoners: A Systematic Formal Analysis of
Chain-of-Thought [10.524051272257614]
Large language models (LLMs) have shown remarkable reasoning capabilities given chain-of-thought prompts.
We present a new synthetic question-answering dataset called PrOntoQA, where each example is generated as a synthetic world model.
This allows us to parse the generated chain-of-thought into symbolic proofs for formal analysis.
arXiv Detail & Related papers (2022-10-03T21:34:32Z) - Faithful Reasoning Using Large Language Models [12.132449274592668]
We show how LMs can be made to perform faithful multi-step reasoning via a process whose causal structure mirrors the underlying logical structure of the problem.
Our approach works by chaining together reasoning steps, where each step results from calls to two fine-tuned LMs.
We demonstrate the effectiveness of our model on multi-step logical deduction and scientific question-answering, showing that it outperforms baselines on final answer accuracy.
arXiv Detail & Related papers (2022-08-30T13:44:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.