Paraphrase Types for Generation and Detection
- URL: http://arxiv.org/abs/2310.14863v3
- Date: Tue, 16 Jul 2024 08:55:21 GMT
- Title: Paraphrase Types for Generation and Detection
- Authors: Jan Philip Wahle, Bela Gipp, Terry Ruas,
- Abstract summary: We name these tasks Paraphrase Type Generation and Paraphrase Type Detection.
Our results suggest that while current techniques perform well in a binary classification scenario, the inclusion of fine-grained paraphrase types poses a significant challenge.
We believe paraphrase types can unlock a new paradigm for developing paraphrase models and solving tasks in the future.
- Score: 7.800428507692341
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Current approaches in paraphrase generation and detection heavily rely on a single general similarity score, ignoring the intricate linguistic properties of language. This paper introduces two new tasks to address this shortcoming by considering paraphrase types - specific linguistic perturbations at particular text positions. We name these tasks Paraphrase Type Generation and Paraphrase Type Detection. Our results suggest that while current techniques perform well in a binary classification scenario, i.e., paraphrased or not, the inclusion of fine-grained paraphrase types poses a significant challenge. While most approaches are good at generating and detecting general semantic similar content, they fail to understand the intrinsic linguistic variables they manipulate. Models trained in generating and identifying paraphrase types also show improvements in tasks without them. In addition, scaling these models further improves their ability to understand paraphrase types. We believe paraphrase types can unlock a new paradigm for developing paraphrase models and solving tasks in the future.
Related papers
- Adapting Dual-encoder Vision-language Models for Paraphrased Retrieval [55.90407811819347]
We consider the task of paraphrased text-to-image retrieval where a model aims to return similar results given a pair of paraphrased queries.
We train a dual-encoder model starting from a language model pretrained on a large text corpus.
Compared to public dual-encoder models such as CLIP and OpenCLIP, the model trained with our best adaptation strategy achieves a significantly higher ranking similarity for paraphrased queries.
arXiv Detail & Related papers (2024-05-06T06:30:17Z) - Neural paraphrasing by automatically crawled and aligned sentence pairs [11.95795974003684]
The main obstacle toward neural-network-based paraphrasing is the lack of large datasets with aligned pairs of sentences and paraphrases.
We present a method for the automatic generation of large aligned corpora, that is based on the assumption that news and blog websites talk about the same events using different narrative styles.
We propose a similarity search procedure with linguistic constraints that, given a reference sentence, is able to locate the most similar candidate paraphrases out from millions of indexed sentences.
arXiv Detail & Related papers (2024-02-16T10:40:38Z) - Vector-Quantized Prompt Learning for Paraphrase Generation [18.40940464497253]
This paper proposes to generate diverse and high-quality paraphrases by exploiting the pre-trained models with instance-dependent prompts.
Extensive experiments demonstrate that the proposed method achieves new state-of-art results on three benchmark datasets.
arXiv Detail & Related papers (2023-11-25T07:13:06Z) - Paraphrase Identification with Deep Learning: A Review of Datasets and Methods [1.4325734372991794]
We investigate how the under-representation of certain paraphrase types in popular datasets affects the ability to detect plagiarism.
We introduce and validate a new refined typology for paraphrases.
We propose new directions for future research and dataset development to enhance AI-based paraphrase detection.
arXiv Detail & Related papers (2022-12-13T23:06:20Z) - Retrieval-Augmented Multilingual Keyphrase Generation with
Retriever-Generator Iterative Training [66.64843711515341]
Keyphrase generation is the task of automatically predicting keyphrases given a piece of long text.
We call attention to a new setting named multilingual keyphrase generation.
We propose a retrieval-augmented method for multilingual keyphrase generation to mitigate the data shortage problem in non-English languages.
arXiv Detail & Related papers (2022-05-21T00:45:21Z) - Ultra-fine Entity Typing with Indirect Supervision from Natural Language
Inference [28.78215056129358]
This work presents LITE, a new approach that formulates entity typing as a natural language inference (NLI) problem.
Experiments show that, with limited training data, LITE obtains state-of-the-art performance on the UFET task.
arXiv Detail & Related papers (2022-02-12T23:56:26Z) - On The Ingredients of an Effective Zero-shot Semantic Parser [95.01623036661468]
We analyze zero-shot learning by paraphrasing training examples of canonical utterances and programs from a grammar.
We propose bridging these gaps using improved grammars, stronger paraphrasers, and efficient learning methods.
Our model achieves strong performance on two semantic parsing benchmarks (Scholar, Geo) with zero labeled data.
arXiv Detail & Related papers (2021-10-15T21:41:16Z) - Towards Document-Level Paraphrase Generation with Sentence Rewriting and
Reordering [88.08581016329398]
We propose CoRPG (Coherence Relationship guided Paraphrase Generation) for document-level paraphrase generation.
We use graph GRU to encode the coherence relationship graph and get the coherence-aware representation for each sentence.
Our model can generate document paraphrase with more diversity and semantic preservation.
arXiv Detail & Related papers (2021-09-15T05:53:40Z) - Experiments with adversarial attacks on text genres [0.0]
Neural models based on pre-trained transformers, such as BERT or XLM-RoBERTa, demonstrate SOTA results in many NLP tasks.
We show that embedding-based algorithms which can replace some of the most significant'' words with words similar to them, have the ability to influence model predictions in a significant proportion of cases.
arXiv Detail & Related papers (2021-07-05T19:37:59Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
We show that, unlike syntax, semantics is not brought to the surface by today's pretrained models.
We then use convolutional graph encoders to explicitly incorporate semantic parses into task-specific finetuning.
arXiv Detail & Related papers (2020-12-10T01:27:24Z) - Limits of Detecting Text Generated by Large-Scale Language Models [65.46403462928319]
Some consider large-scale language models that can generate long and coherent pieces of text as dangerous, since they may be used in misinformation campaigns.
Here we formulate large-scale language model output detection as a hypothesis testing problem to classify text as genuine or generated.
arXiv Detail & Related papers (2020-02-09T19:53:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.