PartialFormer: Modeling Part Instead of Whole for Machine Translation
- URL: http://arxiv.org/abs/2310.14921v2
- Date: Wed, 5 Jun 2024 17:12:04 GMT
- Title: PartialFormer: Modeling Part Instead of Whole for Machine Translation
- Authors: Tong Zheng, Bei Li, Huiwen Bao, Jiale Wang, Weiqiao Shan, Tong Xiao, Jingbo Zhu,
- Abstract summary: We introduce PartialFormer, a parameter-efficient Transformer architecture utilizing multiple smaller FFNs.
These smaller FFNs are integrated into a multi-head attention mechanism for effective collaboration.
Experiments on 9 translation tasks and 1 abstractive summarization task validate the effectiveness of our PartialFormer approach.
- Score: 40.67489864907433
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The design choices in Transformer feed-forward neural networks have resulted in significant computational and parameter overhead. In this work, we emphasize the importance of hidden dimensions in designing lightweight FFNs, a factor often overlooked in previous architectures. Guided by this principle, we introduce PartialFormer, a parameter-efficient Transformer architecture utilizing multiple smaller FFNs to reduce parameters and computation while maintaining essential hidden dimensions. These smaller FFNs are integrated into a multi-head attention mechanism for effective collaboration. We also propose a tailored head scaling strategy to enhance PartialFormer's capabilities. Furthermore, we present a residual-like attention calculation to improve depth scaling within PartialFormer. Extensive experiments on 9 translation tasks and 1 abstractive summarization task validate the effectiveness of our PartialFormer approach on machine translation and summarization tasks. Our code would be available at: https://github.com/zhengkid/PartialFormer.
Related papers
- Pruning By Explaining Revisited: Optimizing Attribution Methods to Prune CNNs and Transformers [14.756988176469365]
An effective approach to reduce computational requirements and increase efficiency is to prune unnecessary components of Deep Neural Networks.
Previous work has shown that attribution methods from the field of eXplainable AI serve as effective means to extract and prune the least relevant network components in a few-shot fashion.
arXiv Detail & Related papers (2024-08-22T17:35:18Z) - Investigating Low-Rank Training in Transformer Language Models: Efficiency and Scaling Analysis [16.253898272659242]
This study focuses on Transformer-based LLMs, specifically applying low-rank parametrization to feedforward networks (FFNs)
Experiments on the large RefinedWeb dataset show that low-rank parametrization is both efficient (e.g., 2.6$times$ FFN speed-up with 32% parameters) and effective during training.
Motivated by this finding, we develop the wide and structured networks surpassing the current medium-sized and large-sized Transformer in perplexity and throughput performance.
arXiv Detail & Related papers (2024-07-13T10:08:55Z) - Scaling Pre-trained Language Models to Deeper via Parameter-efficient
Architecture [68.13678918660872]
We design a more capable parameter-sharing architecture based on matrix product operator (MPO)
MPO decomposition can reorganize and factorize the information of a parameter matrix into two parts.
Our architecture shares the central tensor across all layers for reducing the model size.
arXiv Detail & Related papers (2023-03-27T02:34:09Z) - CloudAttention: Efficient Multi-Scale Attention Scheme For 3D Point
Cloud Learning [81.85951026033787]
We set transformers in this work and incorporate them into a hierarchical framework for shape classification and part and scene segmentation.
We also compute efficient and dynamic global cross attentions by leveraging sampling and grouping at each iteration.
The proposed hierarchical model achieves state-of-the-art shape classification in mean accuracy and yields results on par with the previous segmentation methods.
arXiv Detail & Related papers (2022-07-31T21:39:15Z) - Transformer-based Context Condensation for Boosting Feature Pyramids in
Object Detection [77.50110439560152]
Current object detectors typically have a feature pyramid (FP) module for multi-level feature fusion (MFF)
We propose a novel and efficient context modeling mechanism that can help existing FPs deliver better MFF results.
In particular, we introduce a novel insight that comprehensive contexts can be decomposed and condensed into two types of representations for higher efficiency.
arXiv Detail & Related papers (2022-07-14T01:45:03Z) - HRFormer: High-Resolution Transformer for Dense Prediction [99.6060997466614]
We present a High-Resolution Transformer (HRFormer) that learns high-resolution representations for dense prediction tasks.
We take advantage of the multi-resolution parallel design introduced in high-resolution convolutional networks (HRNet)
We demonstrate the effectiveness of the High-Resolution Transformer on both human pose estimation and semantic segmentation tasks.
arXiv Detail & Related papers (2021-10-18T15:37:58Z) - PnP-DETR: Towards Efficient Visual Analysis with Transformers [146.55679348493587]
Recently, DETR pioneered the solution vision tasks with transformers, it directly translates the image feature map into the object result.
Recent transformer-based image recognition model andTT show consistent efficiency gain.
arXiv Detail & Related papers (2021-09-15T01:10:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.