Matryoshka Diffusion Models
- URL: http://arxiv.org/abs/2310.15111v2
- Date: Fri, 30 Aug 2024 19:21:36 GMT
- Title: Matryoshka Diffusion Models
- Authors: Jiatao Gu, Shuangfei Zhai, Yizhe Zhang, Josh Susskind, Navdeep Jaitly,
- Abstract summary: Diffusion models are the de facto approach for generating high-quality images and videos.
We introduce Matryoshka Diffusion Models, an end-to-end framework for high-resolution image and video synthesis.
We demonstrate the effectiveness of our approach on various benchmarks, including class-conditioned image generation, high-resolution text-to-image, and text-to-video applications.
- Score: 38.26966802461602
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models are the de facto approach for generating high-quality images and videos, but learning high-dimensional models remains a formidable task due to computational and optimization challenges. Existing methods often resort to training cascaded models in pixel space or using a downsampled latent space of a separately trained auto-encoder. In this paper, we introduce Matryoshka Diffusion Models(MDM), an end-to-end framework for high-resolution image and video synthesis. We propose a diffusion process that denoises inputs at multiple resolutions jointly and uses a NestedUNet architecture where features and parameters for small-scale inputs are nested within those of large scales. In addition, MDM enables a progressive training schedule from lower to higher resolutions, which leads to significant improvements in optimization for high-resolution generation. We demonstrate the effectiveness of our approach on various benchmarks, including class-conditioned image generation, high-resolution text-to-image, and text-to-video applications. Remarkably, we can train a single pixel-space model at resolutions of up to 1024x1024 pixels, demonstrating strong zero-shot generalization using the CC12M dataset, which contains only 12 million images. Our code is released at https://github.com/apple/ml-mdm
Related papers
- Meissonic: Revitalizing Masked Generative Transformers for Efficient High-Resolution Text-to-Image Synthesis [62.06970466554273]
We present Meissonic, which non-autoregressive masked image modeling (MIM) text-to-image elevates to a level comparable with state-of-the-art diffusion models like SDXL.
We leverage high-quality training data, integrate micro-conditions informed by human preference scores, and employ feature compression layers to further enhance image fidelity and resolution.
Our model not only matches but often exceeds the performance of existing models like SDXL in generating high-quality, high-resolution images.
arXiv Detail & Related papers (2024-10-10T17:59:17Z) - Hierarchical Patch Diffusion Models for High-Resolution Video Generation [50.42746357450949]
We develop deep context fusion, which propagates context information from low-scale to high-scale patches in a hierarchical manner.
We also propose adaptive computation, which allocates more network capacity and computation towards coarse image details.
The resulting model sets a new state-of-the-art FVD score of 66.32 and Inception Score of 87.68 in class-conditional video generation.
arXiv Detail & Related papers (2024-06-12T01:12:53Z) - Greedy Growing Enables High-Resolution Pixel-Based Diffusion Models [41.67994377132345]
We propose a greedy algorithm that grows the architecture into high-resolution end-to-end models.
This enables a single stage model capable of generating high-resolution images without the need of a super-resolution cascade.
Our results rely on public datasets and show that we are able to train non-cascaded models up to 8B parameters with no further regularization schemes.
arXiv Detail & Related papers (2024-05-27T02:12:39Z) - DiM: Diffusion Mamba for Efficient High-Resolution Image Synthesis [56.849285913695184]
Diffusion Mamba (DiM) is a sequence model for efficient high-resolution image synthesis.
DiM architecture achieves inference-time efficiency for high-resolution images.
Experiments demonstrate the effectiveness and efficiency of our DiM.
arXiv Detail & Related papers (2024-05-23T06:53:18Z) - Arbitrary-Scale Image Generation and Upsampling using Latent Diffusion Model and Implicit Neural Decoder [29.924160271522354]
Super-resolution (SR) and image generation are important tasks in computer vision and are widely adopted in real-world applications.
Most existing methods, however, generate images only at fixed-scale magnification and suffer from over-smoothing and artifacts.
Most relevant work applied Implicit Neural Representation (INR) to the denoising diffusion model to obtain continuous-resolution yet diverse and high-quality SR results.
We propose a novel pipeline that can super-resolve an input image or generate from a random noise a novel image at arbitrary scales.
arXiv Detail & Related papers (2024-03-15T12:45:40Z) - Align your Latents: High-Resolution Video Synthesis with Latent
Diffusion Models [71.11425812806431]
Latent Diffusion Models (LDMs) enable high-quality image synthesis while avoiding excessive compute demands.
Here, we apply the LDM paradigm to high-resolution generation, a particularly resource-intensive task.
We focus on two relevant real-world applications: Simulation of in-the-wild driving data and creative content creation with text-to-video modeling.
arXiv Detail & Related papers (2023-04-18T08:30:32Z) - Locally Masked Convolution for Autoregressive Models [107.4635841204146]
LMConv is a simple modification to the standard 2D convolution that allows arbitrary masks to be applied to the weights at each location in the image.
We learn an ensemble of distribution estimators that share parameters but differ in generation order, achieving improved performance on whole-image density estimation.
arXiv Detail & Related papers (2020-06-22T17:59:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.