Error analysis of generative adversarial network
- URL: http://arxiv.org/abs/2310.15387v1
- Date: Mon, 23 Oct 2023 22:39:28 GMT
- Title: Error analysis of generative adversarial network
- Authors: Mahmud Hasan and Hailin Sang
- Abstract summary: We study the error convergence rate of the GAN model based on a class of functions encompassing the discriminator and generator neural networks.
By employing the Talagrand inequality and Borel-Cantelli lemma, we establish a tight convergence rate for the error of GAN.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The generative adversarial network (GAN) is an important model developed for
high-dimensional distribution learning in recent years. However, there is a
pressing need for a comprehensive method to understand its error convergence
rate. In this research, we focus on studying the error convergence rate of the
GAN model that is based on a class of functions encompassing the discriminator
and generator neural networks. These functions are VC type with bounded
envelope function under our assumptions, enabling the application of the
Talagrand inequality. By employing the Talagrand inequality and Borel-Cantelli
lemma, we establish a tight convergence rate for the error of GAN. This method
can also be applied on existing error estimations of GAN and yields improved
convergence rates. In particular, the error defined with the neural network
distance is a special case error in our definition.
Related papers
- Approximation Error and Complexity Bounds for ReLU Networks on Low-Regular Function Spaces [0.0]
We consider the approximation of a large class of bounded functions, with minimal regularity assumptions, by ReLU neural networks.
We show that the approximation error can be bounded from above by a quantity proportional to the uniform norm of the target function.
arXiv Detail & Related papers (2024-05-10T14:31:58Z) - A new approach to generalisation error of machine learning algorithms:
Estimates and convergence [0.0]
We introduce a new approach to the estimation of the (generalisation) error and to convergence.
Our results include estimates of the error without any structural assumption on the neural networks.
arXiv Detail & Related papers (2023-06-23T20:57:31Z) - Benign Overfitting in Deep Neural Networks under Lazy Training [72.28294823115502]
We show that when the data distribution is well-separated, DNNs can achieve Bayes-optimal test error for classification.
Our results indicate that interpolating with smoother functions leads to better generalization.
arXiv Detail & Related papers (2023-05-30T19:37:44Z) - Learning Distributions by Generative Adversarial Networks: Approximation
and Generalization [0.6768558752130311]
We study how well generative adversarial networks learn from finite samples by analyzing the convergence rates of these models.
Our analysis is based on a new inequality oracle that decomposes the estimation error of GAN into the discriminator and generator approximation errors.
For generator approximation error, we show that neural network can approximately transform a low-dimensional source distribution to a high-dimensional target distribution.
arXiv Detail & Related papers (2022-05-25T09:26:17Z) - On the Effective Number of Linear Regions in Shallow Univariate ReLU
Networks: Convergence Guarantees and Implicit Bias [50.84569563188485]
We show that gradient flow converges in direction when labels are determined by the sign of a target network with $r$ neurons.
Our result may already hold for mild over- parameterization, where the width is $tildemathcalO(r)$ and independent of the sample size.
arXiv Detail & Related papers (2022-05-18T16:57:10Z) - Robust Estimation for Nonparametric Families via Generative Adversarial
Networks [92.64483100338724]
We provide a framework for designing Generative Adversarial Networks (GANs) to solve high dimensional robust statistics problems.
Our work extend these to robust mean estimation, second moment estimation, and robust linear regression.
In terms of techniques, our proposed GAN losses can be viewed as a smoothed and generalized Kolmogorov-Smirnov distance.
arXiv Detail & Related papers (2022-02-02T20:11:33Z) - Approximation bounds for norm constrained neural networks with
applications to regression and GANs [9.645327615996914]
We prove upper and lower bounds on the approximation error of ReLU neural networks with norm constraint on the weights.
We apply these approximation bounds to analyze the convergences of regression using norm constrained neural networks and distribution estimation by GANs.
arXiv Detail & Related papers (2022-01-24T02:19:05Z) - Predicting Unreliable Predictions by Shattering a Neural Network [145.3823991041987]
Piecewise linear neural networks can be split into subfunctions.
Subfunctions have their own activation pattern, domain, and empirical error.
Empirical error for the full network can be written as an expectation over subfunctions.
arXiv Detail & Related papers (2021-06-15T18:34:41Z) - An error analysis of generative adversarial networks for learning
distributions [11.842861158282265]
generative adversarial networks (GANs) learn probability distributions from finite samples.
GANs are able to adaptively learn data distributions with low-dimensional structure or have H"older densities.
Our analysis is based on a new oracle inequality decomposing the estimation error into generator and discriminator approximation error and statistical error.
arXiv Detail & Related papers (2021-05-27T08:55:19Z) - Understanding Overparameterization in Generative Adversarial Networks [56.57403335510056]
Generative Adversarial Networks (GANs) are used to train non- concave mini-max optimization problems.
A theory has shown the importance of the gradient descent (GD) to globally optimal solutions.
We show that in an overized GAN with a $1$-layer neural network generator and a linear discriminator, the GDA converges to a global saddle point of the underlying non- concave min-max problem.
arXiv Detail & Related papers (2021-04-12T16:23:37Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.