Grasp Multiple Objects with One Hand
- URL: http://arxiv.org/abs/2310.15599v2
- Date: Thu, 14 Mar 2024 09:53:05 GMT
- Title: Grasp Multiple Objects with One Hand
- Authors: Yuyang Li, Bo Liu, Yiran Geng, Puhao Li, Yaodong Yang, Yixin Zhu, Tengyu Liu, Siyuan Huang,
- Abstract summary: MultiGrasp is a novel two-stage approach for multi-object grasping using a dexterous multi-fingered robotic hand on a tabletop.
Our experimental focus is primarily on dual-object grasping, achieving a success rate of 44.13%.
The framework demonstrates the potential for grasping more than two objects at the cost of inference speed.
- Score: 44.18611368961791
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The intricate kinematics of the human hand enable simultaneous grasping and manipulation of multiple objects, essential for tasks such as object transfer and in-hand manipulation. Despite its significance, the domain of robotic multi-object grasping is relatively unexplored and presents notable challenges in kinematics, dynamics, and object configurations. This paper introduces MultiGrasp, a novel two-stage approach for multi-object grasping using a dexterous multi-fingered robotic hand on a tabletop. The process consists of (i) generating pre-grasp proposals and (ii) executing the grasp and lifting the objects. Our experimental focus is primarily on dual-object grasping, achieving a success rate of 44.13%, highlighting adaptability to new object configurations and tolerance for imprecise grasps. Additionally, the framework demonstrates the potential for grasping more than two objects at the cost of inference speed.
Related papers
- Decomposed Vector-Quantized Variational Autoencoder for Human Grasp Generation [27.206656215734295]
We propose a novel Decomposed Vector-Quantized Variational Autoencoder (DVQ-VAE) to generate realistic human grasps.
Part-aware decomposed architecture facilitates more precise management of the interaction between each component of hand and object.
Our model achieved about 14.1% relative improvement in the quality index compared to the state-of-the-art methods in four widely-adopted benchmarks.
arXiv Detail & Related papers (2024-07-19T06:41:16Z) - GraspXL: Generating Grasping Motions for Diverse Objects at Scale [30.104108863264706]
We unify the generation of hand-object grasping motions across multiple motion objectives in a policy learning framework GraspXL.
Our policy trained with 58 objects can robustly synthesize diverse grasping motions for more than 500k unseen objects with a success rate of 82.2%.
Our framework can be deployed to different dexterous hands and work with reconstructed or generated objects.
arXiv Detail & Related papers (2024-03-28T17:57:27Z) - DiffH2O: Diffusion-Based Synthesis of Hand-Object Interactions from Textual Descriptions [15.417836855005087]
We propose DiffH2O, a novel method to synthesize realistic, one or two-handed object interactions.
We decompose the task into a grasping stage and a text-based interaction stage.
In the grasping stage, the model only generates hand motions, whereas in the interaction phase both hand and object poses are synthesized.
arXiv Detail & Related papers (2024-03-26T16:06:42Z) - Twisting Lids Off with Two Hands [82.21668778600414]
We show how policies trained in simulation can be effectively and efficiently transferred to the real world.
Specifically, we consider the problem of twisting lids of various bottle-like objects with two hands.
This is the first sim-to-real RL system that enables such capabilities on bimanual multi-fingered hands.
arXiv Detail & Related papers (2024-03-04T18:59:30Z) - Kinematic-aware Prompting for Generalizable Articulated Object
Manipulation with LLMs [53.66070434419739]
Generalizable articulated object manipulation is essential for home-assistant robots.
We propose a kinematic-aware prompting framework that prompts Large Language Models with kinematic knowledge of objects to generate low-level motion waypoints.
Our framework outperforms traditional methods on 8 categories seen and shows a powerful zero-shot capability for 8 unseen articulated object categories.
arXiv Detail & Related papers (2023-11-06T03:26:41Z) - Task-Oriented Human-Object Interactions Generation with Implicit Neural
Representations [61.659439423703155]
TOHO: Task-Oriented Human-Object Interactions Generation with Implicit Neural Representations.
Our method generates continuous motions that are parameterized only by the temporal coordinate.
This work takes a step further toward general human-scene interaction simulation.
arXiv Detail & Related papers (2023-03-23T09:31:56Z) - Efficient and Robust Training of Dense Object Nets for Multi-Object
Robot Manipulation [8.321536457963655]
We propose a framework for robust and efficient training of Dense Object Nets (DON)
We focus on training with multi-object data instead of singulated objects, combined with a well-chosen augmentation scheme.
We demonstrate the robustness and accuracy of our proposed framework on a real-world robotic grasping task.
arXiv Detail & Related papers (2022-06-24T08:24:42Z) - V-MAO: Generative Modeling for Multi-Arm Manipulation of Articulated
Objects [51.79035249464852]
We present a framework for learning multi-arm manipulation of articulated objects.
Our framework includes a variational generative model that learns contact point distribution over object rigid parts for each robot arm.
arXiv Detail & Related papers (2021-11-07T02:31:09Z) - Simultaneous Multi-View Object Recognition and Grasping in Open-Ended
Domains [0.0]
We propose a deep learning architecture with augmented memory capacities to handle open-ended object recognition and grasping simultaneously.
We demonstrate the ability of our approach to grasp never-seen-before objects and to rapidly learn new object categories using very few examples on-site in both simulation and real-world settings.
arXiv Detail & Related papers (2021-06-03T14:12:11Z) - Reactive Human-to-Robot Handovers of Arbitrary Objects [57.845894608577495]
We present a vision-based system that enables human-to-robot handovers of unknown objects.
Our approach combines closed-loop motion planning with real-time, temporally-consistent grasp generation.
We demonstrate the generalizability, usability, and robustness of our approach on a novel benchmark set of 26 diverse household objects.
arXiv Detail & Related papers (2020-11-17T21:52:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.