Power-Enhanced Residual Network for Function Approximation and Physics-Informed Inverse Problems
- URL: http://arxiv.org/abs/2310.15690v2
- Date: Tue, 9 Jul 2024 02:19:26 GMT
- Title: Power-Enhanced Residual Network for Function Approximation and Physics-Informed Inverse Problems
- Authors: Amir Noorizadegan, D. L. Young, Y. C. Hon, C. S. Chen,
- Abstract summary: This paper introduces a novel neural network structure called the Power-Enhancing residual network.
It improves the network's capabilities for both smooth and non-smooth functions approximation in 2D and 3D settings.
Results emphasize the exceptional accuracy of the proposed Power-Enhancing residual network, particularly for non-smooth functions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we investigate how the updating of weights during forward operation and the computation of gradients during backpropagation impact the optimization process, training procedure, and overall performance of the neural network, particularly the multi-layer perceptrons (MLPs). This paper introduces a novel neural network structure called the Power-Enhancing residual network, inspired by highway network and residual network, designed to improve the network's capabilities for both smooth and non-smooth functions approximation in 2D and 3D settings. By incorporating power terms into residual elements, the architecture enhances the stability of weight updating, thereby facilitating better convergence and accuracy. The study explores network depth, width, and optimization methods, showing the architecture's adaptability and performance advantages. Consistently, the results emphasize the exceptional accuracy of the proposed Power-Enhancing residual network, particularly for non-smooth functions. Real-world examples also confirm its superiority over plain neural network in terms of accuracy, convergence, and efficiency. Moreover, the proposed architecture is also applied to solving the inverse Burgers' equation, demonstrating superior performance. In conclusion, the Power-Enhancing residual network offers a versatile solution that significantly enhances neural network capabilities by emphasizing the importance of stable weight updates for effective training in deep neural networks. The codes implemented are available at: \url{https://github.com/CMMAi/ResNet_for_PINN}.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Stable Weight Updating: A Key to Reliable PDE Solutions Using Deep Learning [0.0]
This paper introduces novel residual-based architectures, designed to enhance stability and accuracy in physics-informed neural networks (PINNs)
The architectures augment traditional neural networks by incorporating residual connections, which facilitate smoother weight updates and improve backpropagation efficiency.
The Squared Residual Network, in particular, exhibits robust performance, achieving enhanced stability and accuracy compared to conventional neural networks.
arXiv Detail & Related papers (2024-07-10T05:20:43Z) - RepAct: The Re-parameterizable Adaptive Activation Function [31.238011686165596]
RepAct is a adaptive activation function tailored for optimizing lightweight neural networks within the computational limitations of edge devices.
When evaluated on tasks such as image classification and object detection, RepAct notably surpassed conventional activation functions.
arXiv Detail & Related papers (2024-06-28T08:25:45Z) - Towards Efficient Deep Spiking Neural Networks Construction with Spiking Activity based Pruning [17.454100169491497]
We propose a structured pruning approach based on the activity levels of convolutional kernels named Spiking Channel Activity-based (SCA) network pruning framework.
Inspired by synaptic plasticity mechanisms, our method dynamically adjusts the network's structure by pruning and regenerating convolutional kernels during training, enhancing the model's adaptation to the current target task.
arXiv Detail & Related papers (2024-06-03T07:44:37Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Multi-agent Reinforcement Learning with Graph Q-Networks for Antenna
Tuning [60.94661435297309]
The scale of mobile networks makes it challenging to optimize antenna parameters using manual intervention or hand-engineered strategies.
We propose a new multi-agent reinforcement learning algorithm to optimize mobile network configurations globally.
We empirically demonstrate the performance of the algorithm on an antenna tilt tuning problem and a joint tilt and power control problem in a simulated environment.
arXiv Detail & Related papers (2023-01-20T17:06:34Z) - A Faster Approach to Spiking Deep Convolutional Neural Networks [0.0]
Spiking neural networks (SNNs) have closer dynamics to the brain than current deep neural networks.
We propose a network structure based on previous work to improve network runtime and accuracy.
arXiv Detail & Related papers (2022-10-31T16:13:15Z) - Self-Reorganizing and Rejuvenating CNNs for Increasing Model Capacity
Utilization [8.661269034961679]
We propose a biologically inspired method for improving the computational resource utilization of neural networks.
The proposed method utilizes the channel activations of a convolution layer in order to reorganize that layers parameters.
The rejuvenated parameters learn different features to supplement those learned by the reorganized surviving parameters.
arXiv Detail & Related papers (2021-02-13T06:19:45Z) - Improve Generalization and Robustness of Neural Networks via Weight
Scale Shifting Invariant Regularizations [52.493315075385325]
We show that a family of regularizers, including weight decay, is ineffective at penalizing the intrinsic norms of weights for networks with homogeneous activation functions.
We propose an improved regularizer that is invariant to weight scale shifting and thus effectively constrains the intrinsic norm of a neural network.
arXiv Detail & Related papers (2020-08-07T02:55:28Z) - Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio [101.84651388520584]
This paper presents a new framework named network adjustment, which considers network accuracy as a function of FLOPs.
Experiments on standard image classification datasets and a wide range of base networks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-06T15:51:00Z) - ReActNet: Towards Precise Binary Neural Network with Generalized
Activation Functions [76.05981545084738]
We propose several ideas for enhancing a binary network to close its accuracy gap from real-valued networks without incurring any additional computational cost.
We first construct a baseline network by modifying and binarizing a compact real-valued network with parameter-free shortcuts.
We show that the proposed ReActNet outperforms all the state-of-the-arts by a large margin.
arXiv Detail & Related papers (2020-03-07T02:12:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.