Online Robust Mean Estimation
- URL: http://arxiv.org/abs/2310.15932v1
- Date: Tue, 24 Oct 2023 15:28:43 GMT
- Title: Online Robust Mean Estimation
- Authors: Daniel M. Kane and Ilias Diakonikolas and Hanshen Xiao and Sihan Liu
- Abstract summary: We study the problem of high-dimensional robust mean estimation in an online setting.
We prove two main results about online robust mean estimation in this model.
- Score: 37.746091744197656
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of high-dimensional robust mean estimation in an online
setting. Specifically, we consider a scenario where $n$ sensors are measuring
some common, ongoing phenomenon. At each time step $t=1,2,\ldots,T$, the
$i^{th}$ sensor reports its readings $x^{(i)}_t$ for that time step. The
algorithm must then commit to its estimate $\mu_t$ for the true mean value of
the process at time $t$. We assume that most of the sensors observe independent
samples from some common distribution $X$, but an $\epsilon$-fraction of them
may instead behave maliciously. The algorithm wishes to compute a good
approximation $\mu$ to the true mean $\mu^\ast := \mathbf{E}[X]$. We note that
if the algorithm is allowed to wait until time $T$ to report its estimate, this
reduces to the well-studied problem of robust mean estimation. However, the
requirement that our algorithm produces partial estimates as the data is coming
in substantially complicates the situation.
We prove two main results about online robust mean estimation in this model.
First, if the uncorrupted samples satisfy the standard condition of
$(\epsilon,\delta)$-stability, we give an efficient online algorithm that
outputs estimates $\mu_t$, $t \in [T],$ such that with high probability it
holds that $\|\mu-\mu^\ast\|_2 = O(\delta \log(T))$, where $\mu = (\mu_t)_{t
\in [T]}$. We note that this error bound is nearly competitive with the best
offline algorithms, which would achieve $\ell_2$-error of $O(\delta)$. Our
second main result shows that with additional assumptions on the input (most
notably that $X$ is a product distribution) there are inefficient algorithms
whose error does not depend on $T$ at all.
Related papers
- Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
We study the problem of residual error estimation for matrix and vector norms using a linear sketch.
We demonstrate that this gives a substantial advantage empirically, for roughly the same sketch size and accuracy as in previous work.
We also show an $Omega(k2/pn1-2/p)$ lower bound for the sparse recovery problem, which is tight up to a $mathrmpoly(log n)$ factor.
arXiv Detail & Related papers (2024-08-16T02:33:07Z) - A Sub-Quadratic Time Algorithm for Robust Sparse Mean Estimation [6.853165736531941]
We study the algorithmic problem of sparse mean estimation in the presence of adversarial outliers.
Our main contribution is an algorithm for robust sparse mean estimation which runs in emphsubquadratic time using $mathrmpoly(k,log d,1/epsilon)$ samples.
arXiv Detail & Related papers (2024-03-07T18:23:51Z) - Data Structures for Density Estimation [66.36971978162461]
Given a sublinear (in $n$) number of samples from $p$, our main result is the first data structure that identifies $v_i$ in time sublinear in $k$.
We also give an improved version of the algorithm of Acharya et al. that reports $v_i$ in time linear in $k$.
arXiv Detail & Related papers (2023-06-20T06:13:56Z) - A spectral least-squares-type method for heavy-tailed corrupted
regression with unknown covariance \& heterogeneous noise [2.019622939313173]
We revisit heavy-tailed corrupted least-squares linear regression assuming to have a corrupted $n$-sized label-feature sample of at most $epsilon n$ arbitrary outliers.
We propose a near-optimal computationally tractable estimator, based on the power method, assuming no knowledge on $(Sigma,Xi) nor the operator norm of $Xi$.
arXiv Detail & Related papers (2022-09-06T23:37:31Z) - List-Decodable Sparse Mean Estimation via Difference-of-Pairs Filtering [42.526664955704746]
We develop a novel, conceptually simpler technique for list-decodable sparse mean estimation.
In particular, for distributions with "certifiably bounded" $t-th moments in $k$-sparse directions, our algorithm achieves error of $(1/alpha)O (1/t)$ with sample complexity $m = (klog(n))O(t)/alpha(mnt)$.
For the special case of Gaussian inliers, our algorithm achieves the optimal error guarantee of $Theta (sqrtlog
arXiv Detail & Related papers (2022-06-10T17:38:18Z) - Robust Testing in High-Dimensional Sparse Models [0.0]
We consider the problem of robustly testing the norm of a high-dimensional sparse signal vector under two different observation models.
We show that any algorithm that reliably tests the norm of the regression coefficient requires at least $n=Omegaleft(min(slog d,1/gamma4)right) samples.
arXiv Detail & Related papers (2022-05-16T07:47:22Z) - Clustering Mixture Models in Almost-Linear Time via List-Decodable Mean
Estimation [58.24280149662003]
We study the problem of list-decodable mean estimation, where an adversary can corrupt a majority of the dataset.
We develop new algorithms for list-decodable mean estimation, achieving nearly-optimal statistical guarantees.
arXiv Detail & Related papers (2021-06-16T03:34:14Z) - List-Decodable Mean Estimation in Nearly-PCA Time [50.79691056481693]
We study the fundamental task of list-decodable mean estimation in high dimensions.
Our algorithm runs in time $widetildeO(ndk)$ for all $k = O(sqrtd) cup Omega(d)$, where $n$ is the size of the dataset.
A variant of our algorithm has runtime $widetildeO(ndk)$ for all $k$, at the expense of an $O(sqrtlog k)$ factor in the recovery guarantee
arXiv Detail & Related papers (2020-11-19T17:21:37Z) - On Efficient Low Distortion Ultrametric Embedding [18.227854382422112]
A widely-used method to preserve the underlying hierarchical structure of the data is to find an embedding of the data into a tree or an ultrametric.
In this paper, we provide a new algorithm which takes as input a set of points isometric in $mathbbRd2 (for universal constant $rho>1$) to output an ultrametric $Delta.
We show that the output of our algorithm is comparable to the output of the linkage algorithms while achieving a much faster running time.
arXiv Detail & Related papers (2020-08-15T11:06:45Z) - Streaming Complexity of SVMs [110.63976030971106]
We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
We show that for both problems, for dimensions of $frac1lambdaepsilon$, one can obtain streaming algorithms with spacely smaller than $frac1lambdaepsilon$.
arXiv Detail & Related papers (2020-07-07T17:10:00Z) - Agnostic Q-learning with Function Approximation in Deterministic
Systems: Tight Bounds on Approximation Error and Sample Complexity [94.37110094442136]
We study the problem of agnostic $Q$-learning with function approximation in deterministic systems.
We show that if $delta = Oleft(rho/sqrtdim_Eright)$, then one can find the optimal policy using $Oleft(dim_Eright)$.
arXiv Detail & Related papers (2020-02-17T18:41:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.