Minimax Forward and Backward Learning of Evolving Tasks with Performance
Guarantees
- URL: http://arxiv.org/abs/2310.15974v1
- Date: Tue, 24 Oct 2023 16:21:41 GMT
- Title: Minimax Forward and Backward Learning of Evolving Tasks with Performance
Guarantees
- Authors: Ver\'onica \'Alvarez, Santiago Mazuelas, and Jose A. Lozano
- Abstract summary: The incremental learning of a growing sequence of tasks holds promise to enable accurate classification.
This paper presents incremental minimax risk classifiers (IMRCs) that effectively exploit forward and backward learning.
IMRCs can result in a significant performance improvement, especially for reduced sample sizes.
- Score: 6.008132390640294
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For a sequence of classification tasks that arrive over time, it is common
that tasks are evolving in the sense that consecutive tasks often have a higher
similarity. The incremental learning of a growing sequence of tasks holds
promise to enable accurate classification even with few samples per task by
leveraging information from all the tasks in the sequence (forward and backward
learning). However, existing techniques developed for continual learning and
concept drift adaptation are either designed for tasks with time-independent
similarities or only aim to learn the last task in the sequence. This paper
presents incremental minimax risk classifiers (IMRCs) that effectively exploit
forward and backward learning and account for evolving tasks. In addition, we
analytically characterize the performance improvement provided by forward and
backward learning in terms of the tasks' expected quadratic change and the
number of tasks. The experimental evaluation shows that IMRCs can result in a
significant performance improvement, especially for reduced sample sizes.
Related papers
- Instruction Matters: A Simple yet Effective Task Selection for Optimized Instruction Tuning of Specific Tasks [51.15473776489712]
We introduce a simple yet effective task selection method that leverages instruction information alone to identify relevant tasks.
Our method is significantly more efficient than traditional approaches, which require complex measurements of pairwise transferability between tasks or the creation of data samples for the target task.
Experimental results demonstrate that training on a small set of tasks, chosen solely on the instructions, results in substantial improvements in performance on benchmarks such as P3, Big-Bench, NIV2, and Big-Bench Hard.
arXiv Detail & Related papers (2024-04-25T08:49:47Z) - Efficient Rehearsal Free Zero Forgetting Continual Learning using
Adaptive Weight Modulation [3.6683171094134805]
Continual learning involves acquiring knowledge of multiple tasks over an extended period.
Most approaches to this problem seek a balance between maximizing performance on the new tasks and minimizing the forgetting of previous tasks.
Our approach attempts to maximize the performance of the new task, while ensuring zero forgetting.
arXiv Detail & Related papers (2023-11-26T12:36:05Z) - Active Instruction Tuning: Improving Cross-Task Generalization by
Training on Prompt Sensitive Tasks [101.40633115037983]
Instruction tuning (IT) achieves impressive zero-shot generalization results by training large language models (LLMs) on a massive amount of diverse tasks with instructions.
How to select new tasks to improve the performance and generalizability of IT models remains an open question.
We propose active instruction tuning based on prompt uncertainty, a novel framework to identify informative tasks, and then actively tune the models on the selected tasks.
arXiv Detail & Related papers (2023-11-01T04:40:05Z) - Multitask Learning with No Regret: from Improved Confidence Bounds to
Active Learning [79.07658065326592]
Quantifying uncertainty in the estimated tasks is of pivotal importance for many downstream applications, such as online or active learning.
We provide novel multitask confidence intervals in the challenging setting when neither the similarity between tasks nor the tasks' features are available to the learner.
We propose a novel online learning algorithm that achieves such improved regret without knowing this parameter in advance.
arXiv Detail & Related papers (2023-08-03T13:08:09Z) - Self-paced Weight Consolidation for Continual Learning [39.27729549041708]
Continual learning algorithms are popular in preventing catastrophic forgetting in sequential task learning settings.
We propose a self-paced Weight Consolidation (spWC) framework to attain continual learning.
arXiv Detail & Related papers (2023-07-20T13:07:41Z) - ForkMerge: Mitigating Negative Transfer in Auxiliary-Task Learning [59.08197876733052]
Auxiliary-Task Learning (ATL) aims to improve the performance of the target task by leveraging the knowledge obtained from related tasks.
Sometimes, learning multiple tasks simultaneously results in lower accuracy than learning only the target task, known as negative transfer.
ForkMerge is a novel approach that periodically forks the model into multiple branches, automatically searches the varying task weights.
arXiv Detail & Related papers (2023-01-30T02:27:02Z) - Reinforcement Learning with Success Induced Task Prioritization [68.8204255655161]
We introduce Success Induced Task Prioritization (SITP), a framework for automatic curriculum learning.
The algorithm selects the order of tasks that provide the fastest learning for agents.
We demonstrate that SITP matches or surpasses the results of other curriculum design methods.
arXiv Detail & Related papers (2022-12-30T12:32:43Z) - Continual Learning with Distributed Optimization: Does CoCoA Forget? [0.0]
We focus on the continual learning problem where the tasks arrive sequentially.
The aim is to perform well on the newly arrived task without performance degradation on the previously seen tasks.
We consider the well-established distributed learning algorithm COCOA.
arXiv Detail & Related papers (2022-11-30T13:49:43Z) - Composite Learning for Robust and Effective Dense Predictions [81.2055761433725]
Multi-task learning promises better model generalization on a target task by jointly optimizing it with an auxiliary task.
We find that jointly training a dense prediction (target) task with a self-supervised (auxiliary) task can consistently improve the performance of the target task, while eliminating the need for labeling auxiliary tasks.
arXiv Detail & Related papers (2022-10-13T17:59:16Z) - TAG: Task-based Accumulated Gradients for Lifelong learning [21.779858050277475]
We propose a task-aware system that adapts the learning rate based on the relatedness among tasks.
We empirically show that our proposed adaptive learning rate not only accounts for catastrophic forgetting but also allows positive backward transfer.
arXiv Detail & Related papers (2021-05-11T16:10:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.