Deep Feature Registration for Unsupervised Domain Adaptation
- URL: http://arxiv.org/abs/2310.16100v1
- Date: Tue, 24 Oct 2023 18:04:53 GMT
- Title: Deep Feature Registration for Unsupervised Domain Adaptation
- Authors: Youshan Zhang and Brian D. Davison
- Abstract summary: We propose a deep feature registration (DFR) model to generate registered features that maintain domain invariant features.
We also employ a pseudo label refinement process to improve the quality of pseudo labels in the target domain.
- Score: 15.246480756974963
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: While unsupervised domain adaptation has been explored to leverage the
knowledge from a labeled source domain to an unlabeled target domain, existing
methods focus on the distribution alignment between two domains. However, how
to better align source and target features is not well addressed. In this
paper, we propose a deep feature registration (DFR) model to generate
registered features that maintain domain invariant features and simultaneously
minimize the domain-dissimilarity of registered features and target features
via histogram matching. We further employ a pseudo label refinement process,
which considers both probabilistic soft selection and center-based hard
selection to improve the quality of pseudo labels in the target domain.
Extensive experiments on multiple UDA benchmarks demonstrate the effectiveness
of our DFR model, resulting in new state-of-the-art performance.
Related papers
- GrabDAE: An Innovative Framework for Unsupervised Domain Adaptation Utilizing Grab-Mask and Denoise Auto-Encoder [16.244871317281614]
Unsupervised Domain Adaptation (UDA) aims to adapt a model trained on a labeled source domain to an unlabeled target domain by addressing the domain shift.
We introduce GrabDAE, an innovative UDA framework designed to tackle domain shift in visual classification tasks.
arXiv Detail & Related papers (2024-10-10T15:19:57Z) - CA-UDA: Class-Aware Unsupervised Domain Adaptation with Optimal
Assignment and Pseudo-Label Refinement [84.10513481953583]
unsupervised domain adaptation (UDA) focuses on the selection of good pseudo-labels as surrogates for the missing labels in the target data.
source domain bias that deteriorates the pseudo-labels can still exist since the shared network of the source and target domains are typically used for the pseudo-label selections.
We propose CA-UDA to improve the quality of the pseudo-labels and UDA results with optimal assignment, a pseudo-label refinement strategy and class-aware domain alignment.
arXiv Detail & Related papers (2022-05-26T18:45:04Z) - ADeADA: Adaptive Density-aware Active Domain Adaptation for Semantic
Segmentation [23.813813896293876]
We present ADeADA, a general active domain adaptation framework for semantic segmentation.
With less than 5% target domain annotations, our method reaches comparable results with that of full supervision.
arXiv Detail & Related papers (2022-02-14T05:17:38Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z) - Disentanglement-based Cross-Domain Feature Augmentation for Effective
Unsupervised Domain Adaptive Person Re-identification [87.72851934197936]
Unsupervised domain adaptive (UDA) person re-identification (ReID) aims to transfer the knowledge from the labeled source domain to the unlabeled target domain for person matching.
One challenge is how to generate target domain samples with reliable labels for training.
We propose a Disentanglement-based Cross-Domain Feature Augmentation strategy.
arXiv Detail & Related papers (2021-03-25T15:28:41Z) - Re-energizing Domain Discriminator with Sample Relabeling for
Adversarial Domain Adaptation [88.86865069583149]
Unsupervised domain adaptation (UDA) methods exploit domain adversarial training to align the features to reduce domain gap.
In this work, we propose an efficient optimization strategy named Re-enforceable Adversarial Domain Adaptation (RADA)
RADA aims to re-energize the domain discriminator during the training by using dynamic domain labels.
arXiv Detail & Related papers (2021-03-22T08:32:55Z) - Effective Label Propagation for Discriminative Semi-Supervised Domain
Adaptation [76.41664929948607]
Semi-supervised domain adaptation (SSDA) methods have demonstrated great potential in large-scale image classification tasks.
We present a novel and effective method to tackle this problem by using effective inter-domain and intra-domain semantic information propagation.
Our source code and pre-trained models will be released soon.
arXiv Detail & Related papers (2020-12-04T14:28:19Z) - Cross-domain Self-supervised Learning for Domain Adaptation with Few
Source Labels [78.95901454696158]
We propose a novel Cross-Domain Self-supervised learning approach for domain adaptation.
Our method significantly boosts performance of target accuracy in the new target domain with few source labels.
arXiv Detail & Related papers (2020-03-18T15:11:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.