Instance-wise Linearization of Neural Network for Model Interpretation
- URL: http://arxiv.org/abs/2310.16295v1
- Date: Wed, 25 Oct 2023 02:07:39 GMT
- Title: Instance-wise Linearization of Neural Network for Model Interpretation
- Authors: Zhimin Li, Shusen Liu, Kailkhura Bhavya, Timo Bremer, Valerio Pascucci
- Abstract summary: The challenge can dive into the non-linear behavior of the neural network.
For a neural network model, the non-linear behavior is often caused by non-linear activation units of a model.
We propose an instance-wise linearization approach to reformulates the forward computation process of a neural network prediction.
- Score: 13.583425552511704
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural network have achieved remarkable successes in many scientific fields.
However, the interpretability of the neural network model is still a major
bottlenecks to deploy such technique into our daily life. The challenge can
dive into the non-linear behavior of the neural network, which rises a critical
question that how a model use input feature to make a decision. The classical
approach to address this challenge is feature attribution, which assigns an
important score to each input feature and reveal its importance of current
prediction. However, current feature attribution approaches often indicate the
importance of each input feature without detail of how they are actually
processed by a model internally. These attribution approaches often raise a
concern that whether they highlight correct features for a model prediction.
For a neural network model, the non-linear behavior is often caused by
non-linear activation units of a model. However, the computation behavior of a
prediction from a neural network model is locally linear, because one
prediction has only one activation pattern. Base on the observation, we propose
an instance-wise linearization approach to reformulates the forward computation
process of a neural network prediction. This approach reformulates different
layers of convolution neural networks into linear matrix multiplication.
Aggregating all layers' computation, a prediction complex convolution neural
network operations can be described as a linear matrix multiplication $F(x) = W
\cdot x + b$. This equation can not only provides a feature attribution map
that highlights the important of the input features but also tells how each
input feature contributes to a prediction exactly. Furthermore, we discuss the
application of this technique in both supervise classification and unsupervised
neural network learning parametric t-SNE dimension reduction.
Related papers
- Recurrent Neural Networks Learn to Store and Generate Sequences using Non-Linear Representations [54.17275171325324]
We present a counterexample to the Linear Representation Hypothesis (LRH)
When trained to repeat an input token sequence, neural networks learn to represent the token at each position with a particular order of magnitude, rather than a direction.
These findings strongly indicate that interpretability research should not be confined to the LRH.
arXiv Detail & Related papers (2024-08-20T15:04:37Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - A Spectral Theory of Neural Prediction and Alignment [8.65717258105897]
We use a recent theoretical framework that relates the generalization error from regression to the spectral properties of the model and the target.
We test a large number of deep neural networks that predict visual cortical activity and show that there are multiple types of geometries that result in low neural prediction error as measured via regression.
arXiv Detail & Related papers (2023-09-22T12:24:06Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Utility-Probability Duality of Neural Networks [4.871730595406078]
We propose an alternative utility-based explanation to the standard supervised learning procedure in deep learning.
The basic idea is to interpret the learned neural network not as a probability model but as an ordinal utility function.
We show that for all neural networks with softmax outputs, the SGD learning dynamic of maximum likelihood estimation can be seen as an iteration process.
arXiv Detail & Related papers (2023-05-24T08:09:07Z) - The Contextual Lasso: Sparse Linear Models via Deep Neural Networks [5.607237982617641]
We develop a new statistical estimator that fits a sparse linear model to the explanatory features such that the sparsity pattern and coefficients vary as a function of the contextual features.
An extensive suite of experiments on real and synthetic data suggests that the learned models, which remain highly transparent, can be sparser than the regular lasso.
arXiv Detail & Related papers (2023-02-02T05:00:29Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
Existing algorithms for uncertainty estimation require modifying the model architecture and training procedure.
This work proposes a new algorithm that can be applied to a given trained neural network and produces approximate prediction intervals.
arXiv Detail & Related papers (2022-05-06T13:18:31Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - A Sparse Coding Interpretation of Neural Networks and Theoretical
Implications [0.0]
Deep convolutional neural networks have achieved unprecedented performance in various computer vision tasks.
We propose a sparse coding interpretation of neural networks that have ReLU activation.
We derive a complete convolutional neural network without normalization and pooling.
arXiv Detail & Related papers (2021-08-14T21:54:47Z) - A Bayesian Perspective on Training Speed and Model Selection [51.15664724311443]
We show that a measure of a model's training speed can be used to estimate its marginal likelihood.
We verify our results in model selection tasks for linear models and for the infinite-width limit of deep neural networks.
Our results suggest a promising new direction towards explaining why neural networks trained with gradient descent are biased towards functions that generalize well.
arXiv Detail & Related papers (2020-10-27T17:56:14Z) - Mean-Field and Kinetic Descriptions of Neural Differential Equations [0.0]
In this work we focus on a particular class of neural networks, i.e. the residual neural networks.
We analyze steady states and sensitivity with respect to the parameters of the network, namely the weights and the bias.
A modification of the microscopic dynamics, inspired by residual neural networks, leads to a Fokker-Planck formulation of the network.
arXiv Detail & Related papers (2020-01-07T13:41:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.