SMURF-THP: Score Matching-based UnceRtainty quantiFication for
Transformer Hawkes Process
- URL: http://arxiv.org/abs/2310.16336v1
- Date: Wed, 25 Oct 2023 03:33:45 GMT
- Title: SMURF-THP: Score Matching-based UnceRtainty quantiFication for
Transformer Hawkes Process
- Authors: Zichong Li, Yanbo Xu, Simiao Zuo, Haoming Jiang, Chao Zhang, Tuo Zhao,
Hongyuan Zha
- Abstract summary: We propose SMURF-THP, a score-based method for learning Transformer Hawkes process and quantifying prediction uncertainty.
Specifically, SMURF-THP learns the score function of events' arrival time based on a score-matching objective.
We conduct extensive experiments in both event type prediction and uncertainty quantification of arrival time.
- Score: 76.98721879039559
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformer Hawkes process models have shown to be successful in modeling
event sequence data. However, most of the existing training methods rely on
maximizing the likelihood of event sequences, which involves calculating some
intractable integral. Moreover, the existing methods fail to provide
uncertainty quantification for model predictions, e.g., confidence intervals
for the predicted event's arrival time. To address these issues, we propose
SMURF-THP, a score-based method for learning Transformer Hawkes process and
quantifying prediction uncertainty. Specifically, SMURF-THP learns the score
function of events' arrival time based on a score-matching objective that
avoids the intractable computation. With such a learned score function, we can
sample arrival time of events from the predictive distribution. This naturally
allows for the quantification of uncertainty by computing confidence intervals
over the generated samples. We conduct extensive experiments in both event type
prediction and uncertainty quantification of arrival time. In all the
experiments, SMURF-THP outperforms existing likelihood-based methods in
confidence calibration while exhibiting comparable prediction accuracy.
Related papers
- Score Matching-based Pseudolikelihood Estimation of Neural Marked
Spatio-Temporal Point Process with Uncertainty Quantification [59.81904428056924]
We introduce SMASH: a Score MAtching estimator for learning markedPs with uncertainty quantification.
Specifically, our framework adopts a normalization-free objective by estimating the pseudolikelihood of markedPs through score-matching.
The superior performance of our proposed framework is demonstrated through extensive experiments in both event prediction and uncertainty quantification.
arXiv Detail & Related papers (2023-10-25T02:37:51Z) - User-defined Event Sampling and Uncertainty Quantification in Diffusion
Models for Physical Dynamical Systems [49.75149094527068]
We show that diffusion models can be adapted to make predictions and provide uncertainty quantification for chaotic dynamical systems.
We develop a probabilistic approximation scheme for the conditional score function which converges to the true distribution as the noise level decreases.
We are able to sample conditionally on nonlinear userdefined events at inference time, and matches data statistics even when sampling from the tails of the distribution.
arXiv Detail & Related papers (2023-06-13T03:42:03Z) - The Implicit Delta Method [61.36121543728134]
In this paper, we propose an alternative, the implicit delta method, which works by infinitesimally regularizing the training loss of uncertainty.
We show that the change in the evaluation due to regularization is consistent for the variance of the evaluation estimator, even when the infinitesimal change is approximated by a finite difference.
arXiv Detail & Related papers (2022-11-11T19:34:17Z) - Uncertainty Quantification for Traffic Forecasting: A Unified Approach [21.556559649467328]
Uncertainty is an essential consideration for time series forecasting tasks.
In this work, we focus on quantifying the uncertainty of traffic forecasting.
We develop Deep S-Temporal Uncertainty Quantification (STUQ), which can estimate both aleatoric and relational uncertainty.
arXiv Detail & Related papers (2022-08-11T15:21:53Z) - Conformal prediction for the design problem [72.14982816083297]
In many real-world deployments of machine learning, we use a prediction algorithm to choose what data to test next.
In such settings, there is a distinct type of distribution shift between the training and test data.
We introduce a method to quantify predictive uncertainty in such settings.
arXiv Detail & Related papers (2022-02-08T02:59:12Z) - Comparing Sequential Forecasters [35.38264087676121]
Consider two forecasters, each making a single prediction for a sequence of events over time.
How might we compare these forecasters, either online or post-hoc, while avoiding unverifiable assumptions on how the forecasts and outcomes were generated?
We present novel sequential inference procedures for estimating the time-varying difference in forecast scores.
We empirically validate our approaches by comparing real-world baseball and weather forecasters.
arXiv Detail & Related papers (2021-09-30T22:54:46Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
We describe two types of forecasting problems: regular grid-based and graph-based.
We analyze UQ methods from both the Bayesian and the frequentist point view, casting in a unified framework via statistical decision theory.
Through extensive experiments on real-world road network traffic, epidemics, and air quality forecasting tasks, we reveal the statistical computational trade-offs for different UQ methods.
arXiv Detail & Related papers (2021-05-25T14:35:46Z) - Robust Validation: Confident Predictions Even When Distributions Shift [19.327409270934474]
We describe procedures for robust predictive inference, where a model provides uncertainty estimates on its predictions rather than point predictions.
We present a method that produces prediction sets (almost exactly) giving the right coverage level for any test distribution in an $f$-divergence ball around the training population.
An essential component of our methodology is to estimate the amount of expected future data shift and build robustness to it.
arXiv Detail & Related papers (2020-08-10T17:09:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.