Deepfake Detection: Leveraging the Power of 2D and 3D CNN Ensembles
- URL: http://arxiv.org/abs/2310.16388v1
- Date: Wed, 25 Oct 2023 06:00:37 GMT
- Title: Deepfake Detection: Leveraging the Power of 2D and 3D CNN Ensembles
- Authors: Aagam Bakliwal, Amit D. Joshi
- Abstract summary: This work presents an innovative approach to validate video content.
The methodology blends advanced 2-dimensional and 3-dimensional Convolutional Neural Networks.
Experimental validation underscores the effectiveness of this strategy, showcasing its potential in countering deepfakes generation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the dynamic realm of deepfake detection, this work presents an innovative
approach to validate video content. The methodology blends advanced
2-dimensional and 3-dimensional Convolutional Neural Networks. The 3D model is
uniquely tailored to capture spatiotemporal features via sliding filters,
extending through both spatial and temporal dimensions. This configuration
enables nuanced pattern recognition in pixel arrangement and temporal evolution
across frames. Simultaneously, the 2D model leverages EfficientNet
architecture, harnessing auto-scaling in Convolutional Neural Networks.
Notably, this ensemble integrates Voting Ensembles and Adaptive Weighted
Ensembling. Strategic prioritization of the 3-dimensional model's output
capitalizes on its exceptional spatio-temporal feature extraction. Experimental
validation underscores the effectiveness of this strategy, showcasing its
potential in countering deepfake generation's deceptive practices.
Related papers
- Masked Generative Extractor for Synergistic Representation and 3D Generation of Point Clouds [6.69660410213287]
We propose an innovative framework called Point-MGE to explore the benefits of deeply integrating 3D representation learning and generative learning.
In shape classification, Point-MGE achieved an accuracy of 94.2% (+1.0%) on the ModelNet40 dataset and 92.9% (+5.5%) on the ScanObjectNN dataset.
Experimental results also confirmed that Point-MGE can generate high-quality 3D shapes in both unconditional and conditional settings.
arXiv Detail & Related papers (2024-06-25T07:57:03Z) - Dynamic 3D Point Cloud Sequences as 2D Videos [81.46246338686478]
3D point cloud sequences serve as one of the most common and practical representation modalities of real-world environments.
We propose a novel generic representation called textitStructured Point Cloud Videos (SPCVs)
SPCVs re-organizes a point cloud sequence as a 2D video with spatial smoothness and temporal consistency, where the pixel values correspond to the 3D coordinates of points.
arXiv Detail & Related papers (2024-03-02T08:18:57Z) - ALSTER: A Local Spatio-Temporal Expert for Online 3D Semantic
Reconstruction [62.599588577671796]
We propose an online 3D semantic segmentation method that incrementally reconstructs a 3D semantic map from a stream of RGB-D frames.
Unlike offline methods, ours is directly applicable to scenarios with real-time constraints, such as robotics or mixed reality.
arXiv Detail & Related papers (2023-11-29T20:30:18Z) - Cross-Dimensional Refined Learning for Real-Time 3D Visual Perception
from Monocular Video [2.2299983745857896]
We present a novel real-time capable learning method that jointly perceives a 3D scene's geometry structure and semantic labels.
We propose an end-to-end cross-dimensional refinement neural network (CDRNet) to extract both 3D mesh and 3D semantic labeling in real time.
arXiv Detail & Related papers (2023-03-16T11:53:29Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
gait recognition in the wild is a more practical problem that has attracted the attention of the community of multimedia and computer vision.
This paper presents a novel multi-hop temporal switch method to achieve effective temporal modeling of gait patterns in real-world scenes.
arXiv Detail & Related papers (2022-09-01T10:46:09Z) - 3D Convolutional with Attention for Action Recognition [6.238518976312625]
Current action recognition methods use computationally expensive models for learning-temporal dependencies of the action.
This paper proposes a deep neural network architecture for learning such dependencies consisting of a 3D convolutional layer, fully connected layers and attention layer.
The method first learns spatial features and temporal of actions through 3D-CNN, and then the attention temporal mechanism helps the model to locate attention to essential features.
arXiv Detail & Related papers (2022-06-05T15:12:57Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
State-of-the-art methods for driving-scene LiDAR-based perception often project the point clouds to 2D space and then process them via 2D convolution.
A natural remedy is to utilize the 3D voxelization and 3D convolution network.
We propose a new framework for the outdoor LiDAR segmentation, where cylindrical partition and asymmetrical 3D convolution networks are designed to explore the 3D geometric pattern.
arXiv Detail & Related papers (2021-09-12T06:25:11Z) - Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D
Shapes [77.6741486264257]
We introduce an efficient neural representation that, for the first time, enables real-time rendering of high-fidelity neural SDFs.
We show that our representation is 2-3 orders of magnitude more efficient in terms of rendering speed compared to previous works.
arXiv Detail & Related papers (2021-01-26T18:50:22Z) - Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks [87.50632573601283]
We present a novel method for multi-view depth estimation from a single video.
Our method achieves temporally coherent depth estimation results by using a novel Epipolar Spatio-Temporal (EST) transformer.
To reduce the computational cost, inspired by recent Mixture-of-Experts models, we design a compact hybrid network.
arXiv Detail & Related papers (2020-11-26T04:04:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.