Robust and Actively Secure Serverless Collaborative Learning
- URL: http://arxiv.org/abs/2310.16678v1
- Date: Wed, 25 Oct 2023 14:43:03 GMT
- Title: Robust and Actively Secure Serverless Collaborative Learning
- Authors: Olive Franzese, Adam Dziedzic, Christopher A. Choquette-Choo, Mark R.
Thomas, Muhammad Ahmad Kaleem, Stephan Rabanser, Congyu Fang, Somesh Jha,
Nicolas Papernot, Xiao Wang
- Abstract summary: Collaborative machine learning (ML) is widely used to enable institutions to learn better models from distributed data.
While collaborative approaches to learning intuitively protect user data, they remain vulnerable to either the server, the clients, or both.
We propose a peer-to-peer (P2P) learning scheme that is secure against malicious servers and robust to malicious clients.
- Score: 48.01929996757643
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Collaborative machine learning (ML) is widely used to enable institutions to
learn better models from distributed data. While collaborative approaches to
learning intuitively protect user data, they remain vulnerable to either the
server, the clients, or both, deviating from the protocol. Indeed, because the
protocol is asymmetric, a malicious server can abuse its power to reconstruct
client data points. Conversely, malicious clients can corrupt learning with
malicious updates. Thus, both clients and servers require a guarantee when the
other cannot be trusted to fully cooperate. In this work, we propose a
peer-to-peer (P2P) learning scheme that is secure against malicious servers and
robust to malicious clients. Our core contribution is a generic framework that
transforms any (compatible) algorithm for robust aggregation of model updates
to the setting where servers and clients can act maliciously. Finally, we
demonstrate the computational efficiency of our approach even with 1-million
parameter models trained by 100s of peers on standard datasets.
Related papers
- Trust Driven On-Demand Scheme for Client Deployment in Federated Learning [39.9947471801304]
"Trusted-On-Demand-FL" establishes a relationship of trust between the server and the pool of eligible clients.
Our simulations rely on a continuous user behavior dataset, deploying an optimization model powered by a genetic algorithm.
arXiv Detail & Related papers (2024-05-01T08:50:08Z) - Blockchain-enabled Trustworthy Federated Unlearning [50.01101423318312]
Federated unlearning is a promising paradigm for protecting the data ownership of distributed clients.
Existing works require central servers to retain the historical model parameters from distributed clients.
This paper proposes a new blockchain-enabled trustworthy federated unlearning framework.
arXiv Detail & Related papers (2024-01-29T07:04:48Z) - FedBayes: A Zero-Trust Federated Learning Aggregation to Defend Against
Adversarial Attacks [1.689369173057502]
Federated learning has created a decentralized method to train a machine learning model without needing direct access to client data.
malicious clients are able to corrupt the global model and degrade performance across all clients within a federation.
Our novel aggregation method, FedBayes, mitigates the effect of a malicious client by calculating the probabilities of a client's model weights.
arXiv Detail & Related papers (2023-12-04T21:37:50Z) - FedDefender: Client-Side Attack-Tolerant Federated Learning [60.576073964874]
Federated learning enables learning from decentralized data sources without compromising privacy.
It is vulnerable to model poisoning attacks, where malicious clients interfere with the training process.
We propose a new defense mechanism that focuses on the client-side, called FedDefender, to help benign clients train robust local models.
arXiv Detail & Related papers (2023-07-18T08:00:41Z) - Client-specific Property Inference against Secure Aggregation in
Federated Learning [52.8564467292226]
Federated learning has become a widely used paradigm for collaboratively training a common model among different participants.
Many attacks have shown that it is still possible to infer sensitive information such as membership, property, or outright reconstruction of participant data.
We show that simple linear models can effectively capture client-specific properties only from the aggregated model updates.
arXiv Detail & Related papers (2023-03-07T14:11:01Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - Collusion Resistant Federated Learning with Oblivious Distributed
Differential Privacy [4.951247283741297]
Privacy-preserving federated learning enables a population of distributed clients to jointly learn a shared model.
We present an efficient mechanism based on oblivious distributed differential privacy that is the first to protect against such client collusion.
We conclude with empirical analysis of the protocol's execution speed, learning accuracy, and privacy performance on two data sets.
arXiv Detail & Related papers (2022-02-20T19:52:53Z) - UnSplit: Data-Oblivious Model Inversion, Model Stealing, and Label
Inference Attacks Against Split Learning [0.0]
Split learning framework aims to split up the model among the client and the server.
We show that split learning paradigm can pose serious security risks and provide no more than a false sense of security.
arXiv Detail & Related papers (2021-08-20T07:39:16Z) - Towards Bidirectional Protection in Federated Learning [70.36925233356335]
F2ED-LEARNING offers bidirectional defense against malicious centralized server and Byzantine malicious clients.
F2ED-LEARNING securely aggregates each shard's update and launches FilterL2 on updates from different shards.
evaluation shows that F2ED-LEARNING consistently achieves optimal or close-to-optimal performance.
arXiv Detail & Related papers (2020-10-02T19:37:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.