Local Statistics for Generative Image Detection
- URL: http://arxiv.org/abs/2310.16684v2
- Date: Mon, 03 Mar 2025 12:21:02 GMT
- Title: Local Statistics for Generative Image Detection
- Authors: Yung Jer Wong, Teck Khim Ng,
- Abstract summary: Diffusion models (DMs) are generative models that learn to synthesize images from Gaussian noise.<n>In this paper, we highlighted the effectiveness of Bayer pattern and local statistics in distinguishing digital camera images from DM-generated images.
- Score: 1.565361244756411
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models (DMs) are generative models that learn to synthesize images from Gaussian noise. DMs can be trained to do a variety of tasks such as image generation and image super-resolution. Researchers have made significant improvements in the capability of synthesizing photorealistic images in the past few years. These successes also hasten the need to address the potential misuse of synthesized images. In this paper, we highlighted the effectiveness of Bayer pattern and local statistics in distinguishing digital camera images from DM-generated images. We further hypothesized that local statistics should be used to address the spatial non-stationarity problems in images. We showed that our approach produced promising results for distinguishing real images from synthesized images. This approach is also robust to various perturbations such as image resizing and JPEG compression.
Related papers
- Ambient Denoising Diffusion Generative Adversarial Networks for Establishing Stochastic Object Models from Noisy Image Data [4.069144210024564]
We propose an augmented DDGAN architecture, Ambient DDGAN (ADDGAN) for learning realistic SOMs from noisy image data.
The ability of the proposed ADDGAN to learn realistic SOMs from noisy image data is demonstrated.
arXiv Detail & Related papers (2025-01-31T12:40:43Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
Deepfake techniques for facial synthesis and editing pose serious risks for generative models.
In this paper, we investigate how detection performance varies across model backbones, types, and datasets.
We introduce Contrastive Blur, which enhances performance on facial images, and MINDER, which addresses noise type bias, balancing performance across domains.
arXiv Detail & Related papers (2024-11-28T13:04:45Z) - ZoomLDM: Latent Diffusion Model for multi-scale image generation [57.639937071834986]
We present ZoomLDM, a diffusion model tailored for generating images across multiple scales.
Central to our approach is a novel magnification-aware conditioning mechanism that utilizes self-supervised learning (SSL) embeddings.
ZoomLDM achieves state-of-the-art image generation quality across all scales, excelling in the data-scarce setting of generating thumbnails of entire large images.
arXiv Detail & Related papers (2024-11-25T22:39:22Z) - Semi-Truths: A Large-Scale Dataset of AI-Augmented Images for Evaluating Robustness of AI-Generated Image detectors [62.63467652611788]
We introduce SEMI-TRUTHS, featuring 27,600 real images, 223,400 masks, and 1,472,700 AI-augmented images.
Each augmented image is accompanied by metadata for standardized and targeted evaluation of detector robustness.
Our findings suggest that state-of-the-art detectors exhibit varying sensitivities to the types and degrees of perturbations, data distributions, and augmentation methods used.
arXiv Detail & Related papers (2024-11-12T01:17:27Z) - Image-GS: Content-Adaptive Image Representation via 2D Gaussians [55.15950594752051]
We propose Image-GS, a content-adaptive image representation.
Using anisotropic 2D Gaussians as the basis, Image-GS shows high memory efficiency, supports fast random access, and offers a natural level of detail stack.
General efficiency and fidelity of Image-GS are validated against several recent neural image representations and industry-standard texture compressors.
We hope this research offers insights for developing new applications that require adaptive quality and resource control, such as machine perception, asset streaming, and content generation.
arXiv Detail & Related papers (2024-07-02T00:45:21Z) - Semantic Guided Large Scale Factor Remote Sensing Image Super-resolution with Generative Diffusion Prior [13.148815217684277]
Large scale factor super-resolution (SR) algorithms are vital for maximizing the utilization of low-resolution (LR) satellite data captured from orbit.
Existing methods confront challenges in recovering SR images with clear textures and correct ground objects.
We introduce a novel framework, the Semantic Guided Diffusion Model (SGDM), designed for large scale factor remote sensing image super-resolution.
arXiv Detail & Related papers (2024-05-11T16:06:16Z) - Robust CLIP-Based Detector for Exposing Diffusion Model-Generated Images [13.089550724738436]
Diffusion models (DMs) have revolutionized image generation, producing high-quality images with applications spanning various fields.
Their ability to create hyper-realistic images poses significant challenges in distinguishing between real and synthetic content.
This work introduces a robust detection framework that integrates image and text features extracted by CLIP model with a Multilayer Perceptron (MLP) classifier.
arXiv Detail & Related papers (2024-04-19T14:30:41Z) - Unlocking Pre-trained Image Backbones for Semantic Image Synthesis [29.688029979801577]
We propose a new class of GAN discriminators for semantic image synthesis that generates highly realistic images.
Our model, which we dub DP-SIMS, achieves state-of-the-art results in terms of image quality and consistency with the input label maps on ADE-20K, COCO-Stuff, and Cityscapes.
arXiv Detail & Related papers (2023-12-20T09:39:19Z) - Learned representation-guided diffusion models for large-image generation [58.192263311786824]
We introduce a novel approach that trains diffusion models conditioned on embeddings from self-supervised learning (SSL)
Our diffusion models successfully project these features back to high-quality histopathology and remote sensing images.
Augmenting real data by generating variations of real images improves downstream accuracy for patch-level and larger, image-scale classification tasks.
arXiv Detail & Related papers (2023-12-12T14:45:45Z) - Improving the Effectiveness of Deep Generative Data [5.856292656853396]
Training a model on purely synthetic images for downstream image processing tasks results in an undesired performance drop compared to training on real data.
We propose a new taxonomy to describe factors contributing to this commonly observed phenomenon and investigate it on the popular CIFAR-10 dataset.
Our method outperforms baselines on downstream classification tasks both in case of training on synthetic only (Synthetic-to-Real) and training on a mix of real and synthetic data.
arXiv Detail & Related papers (2023-11-07T12:57:58Z) - On quantifying and improving realism of images generated with diffusion [50.37578424163951]
We propose a metric, called Image Realism Score (IRS), computed from five statistical measures of a given image.
IRS is easily usable as a measure to classify a given image as real or fake.
We experimentally establish the model- and data-agnostic nature of the proposed IRS by successfully detecting fake images generated by Stable Diffusion Model (SDM), Dalle2, Midjourney and BigGAN.
Our efforts have also led to Gen-100 dataset, which provides 1,000 samples for 100 classes generated by four high-quality models.
arXiv Detail & Related papers (2023-09-26T08:32:55Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Person Image Synthesis via Denoising Diffusion Model [116.34633988927429]
We show how denoising diffusion models can be applied for high-fidelity person image synthesis.
Our results on two large-scale benchmarks and a user study demonstrate the photorealism of our proposed approach under challenging scenarios.
arXiv Detail & Related papers (2022-11-22T18:59:50Z) - Representation Learning with Diffusion Models [0.0]
Diffusion models (DMs) have achieved state-of-the-art results for image synthesis tasks as well as density estimation.
We introduce a framework for learning such representations with diffusion models (LRDM)
In particular, the DM and the representation encoder are trained jointly in order to learn rich representations specific to the generative denoising process.
arXiv Detail & Related papers (2022-10-20T07:26:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.