Towards Continually Learning Application Performance Models
- URL: http://arxiv.org/abs/2310.16996v1
- Date: Wed, 25 Oct 2023 20:48:46 GMT
- Title: Towards Continually Learning Application Performance Models
- Authors: Ray A. O. Sinurat, Anurag Daram, Haryadi S. Gunawi, Robert B. Ross,
Sandeep Madireddy
- Abstract summary: Machine learning-based performance models are increasingly being used to build critical job scheduling and application optimization decisions.
Traditionally, these models assume that data distribution does not change as more samples are collected over time.
We develop continually learning performance models that account for the distribution drift, alleviate catastrophic forgetting, and improve generalizability.
- Score: 1.2278517240988065
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning-based performance models are increasingly being used to
build critical job scheduling and application optimization decisions.
Traditionally, these models assume that data distribution does not change as
more samples are collected over time. However, owing to the complexity and
heterogeneity of production HPC systems, they are susceptible to hardware
degradation, replacement, and/or software patches, which can lead to drift in
the data distribution that can adversely affect the performance models. To this
end, we develop continually learning performance models that account for the
distribution drift, alleviate catastrophic forgetting, and improve
generalizability. Our best model was able to retain accuracy, regardless of
having to learn the new distribution of data inflicted by system changes, while
demonstrating a 2x improvement in the prediction accuracy of the whole data
sequence in comparison to the naive approach.
Related papers
- Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
We introduce AutoTSAug, a learnable data augmentation method based on reinforcement learning.
By augmenting the marginal samples with a learnable policy, AutoTSAug substantially improves forecasting performance.
arXiv Detail & Related papers (2024-09-10T07:34:19Z) - The Data Addition Dilemma [4.869513274920574]
In many machine learning for healthcare tasks, standard datasets are constructed by amassing data across many, often fundamentally dissimilar, sources.
But when does adding more data help, and when does it hinder progress on desired model outcomes in real-world settings?
We identify this situation as the textitData Addition Dilemma, demonstrating that adding training data in this multi-source scaling context can at times result in reduced overall accuracy, uncertain fairness outcomes, and reduced worst-subgroup performance.
arXiv Detail & Related papers (2024-08-08T01:42:31Z) - Root Causing Prediction Anomalies Using Explainable AI [3.970146574042422]
We present a novel application of explainable AI (XAI) for root-causing performance degradation in machine learning models.
A single feature corruption can cause cascading feature, label and concept drifts.
We have successfully applied this technique to improve the reliability of models used in personalized advertising.
arXiv Detail & Related papers (2024-03-04T19:38:50Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Private Synthetic Data Meets Ensemble Learning [15.425653946755025]
When machine learning models are trained on synthetic data and then deployed on real data, there is often a performance drop.
We introduce a new ensemble strategy for training downstream models, with the goal of enhancing their performance when used on real data.
arXiv Detail & Related papers (2023-10-15T04:24:42Z) - Online learning techniques for prediction of temporal tabular datasets
with regime changes [0.0]
We propose a modular machine learning pipeline for ranking predictions on temporal panel datasets.
The modularity of the pipeline allows the use of different models, including Gradient Boosting Decision Trees (GBDTs) and Neural Networks.
Online learning techniques, which require no retraining of models, can be used post-prediction to enhance the results.
arXiv Detail & Related papers (2022-12-30T17:19:00Z) - How robust are pre-trained models to distribution shift? [82.08946007821184]
We show how spurious correlations affect the performance of popular self-supervised learning (SSL) and auto-encoder based models (AE)
We develop a novel evaluation scheme with the linear head trained on out-of-distribution (OOD) data, to isolate the performance of the pre-trained models from a potential bias of the linear head used for evaluation.
arXiv Detail & Related papers (2022-06-17T16:18:28Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
Differentiable causal discovery has proposed to factorize the data generating process into a set of modules.
We study the generalization and adaption performance of such modular neural causal models.
Our analysis shows that the modular neural causal models outperform other models on both zero and few-shot adaptation in low data regimes.
arXiv Detail & Related papers (2022-06-09T17:12:32Z) - Wavelet-Based Hybrid Machine Learning Model for Out-of-distribution
Internet Traffic Prediction [3.689539481706835]
This paper investigates machine learning performances using eXtreme Gradient Boosting, Light Gradient Boosting Machine, Gradient Descent, Gradient Boosting Regressor, Cat Regressor.
We propose a hybrid machine learning model integrating wavelet decomposition for improving out-of-distribution prediction.
arXiv Detail & Related papers (2022-05-09T14:34:42Z) - Churn Reduction via Distillation [54.5952282395487]
We show an equivalence between training with distillation using the base model as the teacher and training with an explicit constraint on the predictive churn.
We then show that distillation performs strongly for low churn training against a number of recent baselines.
arXiv Detail & Related papers (2021-06-04T18:03:31Z) - How Training Data Impacts Performance in Learning-based Control [67.7875109298865]
This paper derives an analytical relationship between the density of the training data and the control performance.
We formulate a quality measure for the data set, which we refer to as $rho$-gap.
We show how the $rho$-gap can be applied to a feedback linearizing control law.
arXiv Detail & Related papers (2020-05-25T12:13:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.