This Reads Like That: Deep Learning for Interpretable Natural Language
Processing
- URL: http://arxiv.org/abs/2310.17010v1
- Date: Wed, 25 Oct 2023 21:18:35 GMT
- Title: This Reads Like That: Deep Learning for Interpretable Natural Language
Processing
- Authors: Claudio Fanconi, Moritz Vandenhirtz, Severin Husmann, Julia E. Vogt
- Abstract summary: Prototype learning is a popular machine learning method designed for inherently interpretable decisions.
We introduce a learned weighted similarity measure that enhances the similarity by focusing on informative dimensions of pre-trained sentence embeddings.
We propose a post-hoc explainability mechanism that extracts prediction-relevant words from both the prototype and input sentences.
- Score: 9.002523763052848
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prototype learning, a popular machine learning method designed for inherently
interpretable decisions, leverages similarities to learned prototypes for
classifying new data. While it is mainly applied in computer vision, in this
work, we build upon prior research and further explore the extension of
prototypical networks to natural language processing. We introduce a learned
weighted similarity measure that enhances the similarity computation by
focusing on informative dimensions of pre-trained sentence embeddings.
Additionally, we propose a post-hoc explainability mechanism that extracts
prediction-relevant words from both the prototype and input sentences. Finally,
we empirically demonstrate that our proposed method not only improves
predictive performance on the AG News and RT Polarity datasets over a previous
prototype-based approach, but also improves the faithfulness of explanations
compared to rationale-based recurrent convolutions.
Related papers
- A distributional simplicity bias in the learning dynamics of transformers [50.91742043564049]
We show that transformers, trained on natural language data, also display a simplicity bias.
Specifically, they sequentially learn many-body interactions among input tokens, reaching a saturation point in the prediction error for low-degree interactions.
This approach opens up the possibilities of studying how interactions of different orders in the data affect learning, in natural language processing and beyond.
arXiv Detail & Related papers (2024-10-25T15:39:34Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
Recent advances in explainable AI have made it possible to mitigate limitations by leveraging improved explanations for Transformers.
We use BiLRP, an extension developed for computing second-order explanations in bilinear similarity models, to investigate which feature interactions drive similarity in NLP models.
Our findings contribute to a deeper understanding of different semantic similarity tasks and models, highlighting how novel explainable AI methods enable in-depth analyses and corpus-level insights.
arXiv Detail & Related papers (2024-05-10T17:11:31Z) - Explaining Hate Speech Classification with Model Agnostic Methods [0.9990687944474738]
The research goal of this paper is to bridge the gap between hate speech prediction and the explanations generated by the system to support its decision.
This has been achieved by first predicting the classification of a text and then providing a posthoc, model agnostic and surrogate interpretability approach.
arXiv Detail & Related papers (2023-05-30T19:52:56Z) - Better Language Model with Hypernym Class Prediction [101.8517004687825]
Class-based language models (LMs) have been long devised to address context sparsity in $n$-gram LMs.
In this study, we revisit this approach in the context of neural LMs.
arXiv Detail & Related papers (2022-03-21T01:16:44Z) - Tracing Origins: Coref-aware Machine Reading Comprehension [43.352833140317486]
We imitated the human's reading process in connecting the anaphoric expressions and leverage the coreference information to enhance the word embeddings from the pre-trained model.
We demonstrated that the explicit incorporation of the coreference information in fine-tuning stage performed better than the incorporation of the coreference information in training a pre-trained language models.
arXiv Detail & Related papers (2021-10-15T09:28:35Z) - A Comprehensive Comparison of Pre-training Language Models [0.5139874302398955]
We pre-train a list of transformer-based models with the same amount of text and the same training steps.
The experimental results show that the most improvement upon the origin BERT is adding the RNN-layer to capture more contextual information for short text understanding.
arXiv Detail & Related papers (2021-06-22T02:12:29Z) - Prototypical Representation Learning for Relation Extraction [56.501332067073065]
This paper aims to learn predictive, interpretable, and robust relation representations from distantly-labeled data.
We learn prototypes for each relation from contextual information to best explore the intrinsic semantics of relations.
Results on several relation learning tasks show that our model significantly outperforms the previous state-of-the-art relational models.
arXiv Detail & Related papers (2021-03-22T08:11:43Z) - Explain and Predict, and then Predict Again [6.865156063241553]
We propose ExPred, that uses multi-task learning in the explanation generation phase effectively trading-off explanation and prediction losses.
We conduct an extensive evaluation of our approach on three diverse language datasets.
arXiv Detail & Related papers (2021-01-11T19:36:52Z) - Toward Scalable and Unified Example-based Explanation and Outlier
Detection [128.23117182137418]
We argue for a broader adoption of prototype-based student networks capable of providing an example-based explanation for their prediction.
We show that our prototype-based networks beyond similarity kernels deliver meaningful explanations and promising outlier detection results without compromising classification accuracy.
arXiv Detail & Related papers (2020-11-11T05:58:17Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
Prototypical Contrastive Learning (PCL) is an unsupervised representation learning method.
PCL implicitly encodes semantic structures of the data into the learned embedding space.
PCL outperforms state-of-the-art instance-wise contrastive learning methods on multiple benchmarks.
arXiv Detail & Related papers (2020-05-11T09:53:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.