Transformers Learn to Achieve Second-Order Convergence Rates for In-Context Linear Regression
- URL: http://arxiv.org/abs/2310.17086v3
- Date: Sat, 16 Nov 2024 08:20:24 GMT
- Title: Transformers Learn to Achieve Second-Order Convergence Rates for In-Context Linear Regression
- Authors: Deqing Fu, Tian-Qi Chen, Robin Jia, Vatsal Sharan,
- Abstract summary: We show that Transformers learn to approximate second-order optimization methods for in-context linear regression.
For in-context linear regression, Transformers share a similar convergence rate as Iterative Newton's Method, both exponentially faster than GD.
We also show that Transformers can learn in-context on ill-conditioned data, a setting where Gradient Descent struggles but Iterative Newton succeeds.
- Score: 23.944430707096103
- License:
- Abstract: Transformers excel at in-context learning (ICL) -- learning from demonstrations without parameter updates -- but how they do so remains a mystery. Recent work suggests that Transformers may internally run Gradient Descent (GD), a first-order optimization method, to perform ICL. In this paper, we instead demonstrate that Transformers learn to approximate second-order optimization methods for ICL. For in-context linear regression, Transformers share a similar convergence rate as Iterative Newton's Method, both exponentially faster than GD. Empirically, predictions from successive Transformer layers closely match different iterations of Newton's Method linearly, with each middle layer roughly computing 3 iterations; thus, Transformers and Newton's method converge at roughly the same rate. In contrast, Gradient Descent converges exponentially more slowly. We also show that Transformers can learn in-context on ill-conditioned data, a setting where Gradient Descent struggles but Iterative Newton succeeds. Finally, to corroborate our empirical findings, we prove that Transformers can implement $k$ iterations of Newton's method with $k + \mathcal{O}(1)$ layers.
Related papers
- Can Looped Transformers Learn to Implement Multi-step Gradient Descent for In-context Learning? [69.4145579827826]
We show a fast flow on the regression loss despite the gradient non-ity algorithms for our convergence landscape.
This is the first theoretical analysis for multi-layer Transformer in this setting.
arXiv Detail & Related papers (2024-10-10T18:29:05Z) - Can Transformers Learn $n$-gram Language Models? [77.35809823602307]
We study transformers' ability to learn random $n$-gram LMs of two kinds.
We find that classic estimation techniques for $n$-gram LMs such as add-$lambda$ smoothing outperform transformers.
arXiv Detail & Related papers (2024-10-03T21:21:02Z) - How Well Can Transformers Emulate In-context Newton's Method? [46.08521978754298]
We study whether Transformers can perform higher order optimization methods, beyond the case of linear regression.
We demonstrate the ability of even linear attention-only Transformers in implementing a single step of Newton's iteration for matrix inversion with merely two layers.
arXiv Detail & Related papers (2024-03-05T18:20:10Z) - How do Transformers perform In-Context Autoregressive Learning? [76.18489638049545]
We train a Transformer model on a simple next token prediction task.
We show how a trained Transformer predicts the next token by first learning $W$ in-context, then applying a prediction mapping.
arXiv Detail & Related papers (2024-02-08T16:24:44Z) - Transformers learn in-context by gradient descent [58.24152335931036]
Training Transformers on auto-regressive objectives is closely related to gradient-based meta-learning formulations.
We show how trained Transformers become mesa-optimizers i.e. learn models by gradient descent in their forward pass.
arXiv Detail & Related papers (2022-12-15T09:21:21Z) - Finetuning Pretrained Transformers into RNNs [81.72974646901136]
Transformers have outperformed recurrent neural networks (RNNs) in natural language generation.
A linear-complexity recurrent variant has proven well suited for autoregressive generation.
This work aims to convert a pretrained transformer into its efficient recurrent counterpart.
arXiv Detail & Related papers (2021-03-24T10:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.