Hierarchical Semi-Implicit Variational Inference with Application to
Diffusion Model Acceleration
- URL: http://arxiv.org/abs/2310.17153v1
- Date: Thu, 26 Oct 2023 04:52:28 GMT
- Title: Hierarchical Semi-Implicit Variational Inference with Application to
Diffusion Model Acceleration
- Authors: Longlin Yu, Tianyu Xie, Yu Zhu, Tong Yang, Xiangyu Zhang, Cheng Zhang
- Abstract summary: Semi-implicit variational inference (SIVI) has been introduced to expand the analytical variational families.
We propose hierarchical semi-implicit variational inference, called HSIVI, which generalizes SIVI to allow more expressive multi-layer construction.
- Score: 20.820242501141834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-implicit variational inference (SIVI) has been introduced to expand the
analytical variational families by defining expressive semi-implicit
distributions in a hierarchical manner. However, the single-layer architecture
commonly used in current SIVI methods can be insufficient when the target
posterior has complicated structures. In this paper, we propose hierarchical
semi-implicit variational inference, called HSIVI, which generalizes SIVI to
allow more expressive multi-layer construction of semi-implicit distributions.
By introducing auxiliary distributions that interpolate between a simple base
distribution and the target distribution, the conditional layers can be trained
by progressively matching these auxiliary distributions one layer after
another. Moreover, given pre-trained score networks, HSIVI can be used to
accelerate the sampling process of diffusion models with the score matching
objective. We show that HSIVI significantly enhances the expressiveness of SIVI
on several Bayesian inference problems with complicated target distributions.
When used for diffusion model acceleration, we show that HSIVI can produce high
quality samples comparable to or better than the existing fast diffusion model
based samplers with a small number of function evaluations on various datasets.
Related papers
- Learned Reference-based Diffusion Sampling for multi-modal distributions [2.1383136715042417]
We introduce Learned Reference-based Diffusion Sampler (LRDS), a methodology specifically designed to leverage prior knowledge on the location of the target modes.
LRDS proceeds in two steps by learning a reference diffusion model on samples located in high-density space regions.
We experimentally demonstrate that LRDS best exploits prior knowledge on the target distribution compared to competing algorithms on a variety of challenging distributions.
arXiv Detail & Related papers (2024-10-25T10:23:34Z) - Kernel Semi-Implicit Variational Inference [27.61976547543748]
Semi-implicit variational inference (SIVI) extends traditional variational families with semi-implicit distributions defined in a hierarchical manner.
A recent advancement in SIVI, named SIVI-SM, utilizes an alternative score matching objective made tractable via a minimax formulation.
We propose kernel SIVI (KSIVI), a variant of SIVI-SM that eliminates the need for lower-level optimization through kernel tricks.
arXiv Detail & Related papers (2024-05-29T11:21:25Z) - Theoretical Insights for Diffusion Guidance: A Case Study for Gaussian
Mixture Models [59.331993845831946]
Diffusion models benefit from instillation of task-specific information into the score function to steer the sample generation towards desired properties.
This paper provides the first theoretical study towards understanding the influence of guidance on diffusion models in the context of Gaussian mixture models.
arXiv Detail & Related papers (2024-03-03T23:15:48Z) - Invariant Anomaly Detection under Distribution Shifts: A Causal
Perspective [6.845698872290768]
Anomaly detection (AD) is the machine learning task of identifying highly discrepant abnormal samples.
Under the constraints of a distribution shift, the assumption that training samples and test samples are drawn from the same distribution breaks down.
We attempt to increase the resilience of anomaly detection models to different kinds of distribution shifts.
arXiv Detail & Related papers (2023-12-21T23:20:47Z) - Semi-Implicit Variational Inference via Score Matching [9.654640791869431]
Semi-implicit variational inference (SIVI) greatly enriches the expressiveness of variational families.
Current SIVI approaches often use surrogate evidence lower bounds (ELBOs) or employ expensive inner-loop MCMC runs for unbiased ELBOs for training.
We propose SIVI-SM, a new method for SIVI based on an alternative training objective via score matching.
arXiv Detail & Related papers (2023-08-19T13:32:54Z) - Variance-Preserving-Based Interpolation Diffusion Models for Speech
Enhancement [53.2171981279647]
We present a framework that encapsulates both the VP- and variance-exploding (VE)-based diffusion methods.
To improve performance and ease model training, we analyze the common difficulties encountered in diffusion models.
We evaluate our model against several methods using a public benchmark to showcase the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-14T14:22:22Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - Flexible Amortized Variational Inference in qBOLD MRI [56.4324135502282]
Oxygen extraction fraction (OEF) and deoxygenated blood volume (DBV) are more ambiguously determined from the data.
Existing inference methods tend to yield very noisy and underestimated OEF maps, while overestimating DBV.
This work describes a novel probabilistic machine learning approach that can infer plausible distributions of OEF and DBV.
arXiv Detail & Related papers (2022-03-11T10:47:16Z) - Accuracy on the Line: On the Strong Correlation Between
Out-of-Distribution and In-Distribution Generalization [89.73665256847858]
We show that out-of-distribution performance is strongly correlated with in-distribution performance for a wide range of models and distribution shifts.
Specifically, we demonstrate strong correlations between in-distribution and out-of-distribution performance on variants of CIFAR-10 & ImageNet.
We also investigate cases where the correlation is weaker, for instance some synthetic distribution shifts from CIFAR-10-C and the tissue classification dataset Camelyon17-WILDS.
arXiv Detail & Related papers (2021-07-09T19:48:23Z) - GANs with Variational Entropy Regularizers: Applications in Mitigating
the Mode-Collapse Issue [95.23775347605923]
Building on the success of deep learning, Generative Adversarial Networks (GANs) provide a modern approach to learn a probability distribution from observed samples.
GANs often suffer from the mode collapse issue where the generator fails to capture all existing modes of the input distribution.
We take an information-theoretic approach and maximize a variational lower bound on the entropy of the generated samples to increase their diversity.
arXiv Detail & Related papers (2020-09-24T19:34:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.