Variance of ML-based software fault predictors: are we really improving
fault prediction?
- URL: http://arxiv.org/abs/2310.17264v1
- Date: Thu, 26 Oct 2023 09:31:32 GMT
- Title: Variance of ML-based software fault predictors: are we really improving
fault prediction?
- Authors: Xhulja Shahini, Domenic Bubel, Andreas Metzger
- Abstract summary: We experimentally analyze the variance of a state-of-the-art fault prediction approach.
We observed a maximum variance of 10.10% in terms of the per-class accuracy metric.
- Score: 0.3222802562733786
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Software quality assurance activities become increasingly difficult as
software systems become more and more complex and continuously grow in size.
Moreover, testing becomes even more expensive when dealing with large-scale
systems. Thus, to effectively allocate quality assurance resources, researchers
have proposed fault prediction (FP) which utilizes machine learning (ML) to
predict fault-prone code areas. However, ML algorithms typically make use of
stochastic elements to increase the prediction models' generalizability and
efficiency of the training process. These stochastic elements, also known as
nondeterminism-introducing (NI) factors, lead to variance in the training
process and as a result, lead to variance in prediction accuracy and training
time. This variance poses a challenge for reproducibility in research. More
importantly, while fault prediction models may have shown good performance in
the lab (e.g., often-times involving multiple runs and averaging outcomes),
high variance of results can pose the risk that these models show low
performance when applied in practice. In this work, we experimentally analyze
the variance of a state-of-the-art fault prediction approach. Our experimental
results indicate that NI factors can indeed cause considerable variance in the
fault prediction models' accuracy. We observed a maximum variance of 10.10% in
terms of the per-class accuracy metric. We thus, also discuss how to deal with
such variance.
Related papers
- Evaluation of uncertainty estimations for Gaussian process regression based machine learning interatomic potentials [0.0]
Uncertainty estimations for machine learning interatomic potentials are crucial to quantify the additional model error they introduce.
We consider GPR models with Coulomb and SOAP representations as inputs to predict potential energy surfaces and excitation energies of molecules.
We evaluate, how the GPR variance and ensemble-based uncertainties relate to the error and whether model performance improves by selecting the most uncertain samples from a fixed configuration space.
arXiv Detail & Related papers (2024-10-27T10:06:09Z) - Multiclass Alignment of Confidence and Certainty for Network Calibration [10.15706847741555]
Recent studies reveal that deep neural networks (DNNs) are prone to making overconfident predictions.
We propose a new train-time calibration method, which features a simple, plug-and-play auxiliary loss known as multi-class alignment of predictive mean confidence and predictive certainty (MACC)
Our method achieves state-of-the-art calibration performance for both in-domain and out-domain predictions.
arXiv Detail & Related papers (2023-09-06T00:56:24Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
We propose to utilize large-scale pre-trained models to guide downstream model training with sample difficulty-aware entropy regularization.
We simultaneously improve accuracy and uncertainty calibration across challenging benchmarks.
arXiv Detail & Related papers (2023-04-20T07:29:23Z) - Bridging Precision and Confidence: A Train-Time Loss for Calibrating
Object Detection [58.789823426981044]
We propose a novel auxiliary loss formulation that aims to align the class confidence of bounding boxes with the accurateness of predictions.
Our results reveal that our train-time loss surpasses strong calibration baselines in reducing calibration error for both in and out-domain scenarios.
arXiv Detail & Related papers (2023-03-25T08:56:21Z) - Predictive Multiplicity in Probabilistic Classification [25.111463701666864]
We present a framework for measuring predictive multiplicity in probabilistic classification.
We demonstrate the incidence and prevalence of predictive multiplicity in real-world tasks.
Our results emphasize the need to report predictive multiplicity more widely.
arXiv Detail & Related papers (2022-06-02T16:25:29Z) - Hessian-based toolbox for reliable and interpretable machine learning in
physics [58.720142291102135]
We present a toolbox for interpretability and reliability, extrapolation of the model architecture.
It provides a notion of the influence of the input data on the prediction at a given test point, an estimation of the uncertainty of the model predictions, and an agnostic score for the model predictions.
Our work opens the road to the systematic use of interpretability and reliability methods in ML applied to physics and, more generally, science.
arXiv Detail & Related papers (2021-08-04T16:32:59Z) - Uncertainty Prediction for Machine Learning Models of Material
Properties [0.0]
Uncertainty in AI-based predictions of material properties is of immense importance for the success and reliability of AI applications in material science.
We compare 3 different approaches to obtain such individual uncertainty, testing them on 12 ML-physical properties.
arXiv Detail & Related papers (2021-07-16T16:33:55Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - A comprehensive study on the prediction reliability of graph neural
networks for virtual screening [0.0]
We investigate the effects of model architectures, regularization methods, and loss functions on the prediction performance and reliability of classification results.
Our result highlights that correct choice of regularization and inference methods is evidently important to achieve high success rate.
arXiv Detail & Related papers (2020-03-17T10:13:31Z) - Understanding and Mitigating the Tradeoff Between Robustness and
Accuracy [88.51943635427709]
Adversarial training augments the training set with perturbations to improve the robust error.
We show that the standard error could increase even when the augmented perturbations have noiseless observations from the optimal linear predictor.
arXiv Detail & Related papers (2020-02-25T08:03:01Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
We demonstrate that predictive uncertainty estimated by the current methods does not highly correlate with prediction error.
We propose a novel method that estimates the target labels and magnitude of the prediction error in two steps.
arXiv Detail & Related papers (2020-02-13T15:55:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.