An Approach for Efficient Neural Architecture Search Space Definition
- URL: http://arxiv.org/abs/2310.17669v1
- Date: Wed, 25 Oct 2023 08:07:29 GMT
- Title: An Approach for Efficient Neural Architecture Search Space Definition
- Authors: L\'eo Pouy (ESTACA'Lab), Fouad Khenfri (ESTACA'Lab), Patrick Leserf
(ESTACA'Lab), Chokri Mraidha (LIST (CEA)), Cherif Larouci (ESTACA'Lab)
- Abstract summary: We propose a novel cell-based hierarchical search space, easy to comprehend and manipulate.
The objectives of the proposed approach are to optimize the search-time and to be general enough to handle most of state of the art CNN architectures.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As we advance in the fast-growing era of Machine Learning, various new and
more complex neural architectures are arising to tackle problem more
efficiently. On the one hand their efficient usage requires advanced knowledge
and expertise, which is most of the time difficult to find on the labor market.
On the other hand, searching for an optimized neural architecture is a
time-consuming task when it is performed manually using a trial and error
approach. Hence, a method and a tool support is needed to assist users of
neural architectures, leading to an eagerness in the field of Automatic Machine
Learning (AutoML). When it comes to Deep Learning, an important part of AutoML
is the Neural Architecture Search (NAS). In this paper, we propose a novel
cell-based hierarchical search space, easy to comprehend and manipulate. The
objectives of the proposed approach are to optimize the search-time and to be
general enough to handle most of state of the art Convolutional Neural Networks
(CNN) architectures.
Related papers
- Neural Architecture Search: Insights from 1000 Papers [50.27255667347091]
We provide an organized and comprehensive guide to neural architecture search.
We give a taxonomy of search spaces, algorithms, and speedup techniques.
We discuss resources such as benchmarks, best practices, other surveys, and open-source libraries.
arXiv Detail & Related papers (2023-01-20T18:47:24Z) - Neural Architecture Search for Speech Emotion Recognition [72.1966266171951]
We propose to apply neural architecture search (NAS) techniques to automatically configure the SER models.
We show that NAS can improve SER performance (54.89% to 56.28%) while maintaining model parameter sizes.
arXiv Detail & Related papers (2022-03-31T10:16:10Z) - Accelerating Neural Architecture Exploration Across Modalities Using
Genetic Algorithms [5.620334754517149]
We show how genetic algorithms can be paired with lightly trained objective predictors in an iterative cycle to accelerate multi-objective architectural exploration.
NAS research efforts have centered around computer vision tasks and only recently have other modalities, such as the rapidly growing field of natural language processing, been investigated in depth.
arXiv Detail & Related papers (2022-02-25T20:01:36Z) - Neural Architecture Search for Dense Prediction Tasks in Computer Vision [74.9839082859151]
Deep learning has led to a rising demand for neural network architecture engineering.
neural architecture search (NAS) aims at automatically designing neural network architectures in a data-driven manner rather than manually.
NAS has become applicable to a much wider range of problems in computer vision.
arXiv Detail & Related papers (2022-02-15T08:06:50Z) - Improving the sample-efficiency of neural architecture search with
reinforcement learning [0.0]
In this work, we would like to contribute to the area of Automated Machine Learning (AutoML)
Our focus is on one of the most promising research directions, reinforcement learning.
The validation accuracies of the child networks serve as a reward signal for training the controller.
We propose to modify this to a more modern and complex algorithm, PPO, which has demonstrated to be faster and more stable in other environments.
arXiv Detail & Related papers (2021-10-13T14:30:09Z) - Conceptual Expansion Neural Architecture Search (CENAS) [1.3464152928754485]
We present an approach called Conceptual Expansion Neural Architecture Search (CENAS)
It combines a sample-efficient, computational creativity-inspired transfer learning approach with neural architecture search.
It finds models faster than naive architecture search via transferring existing weights to approximate the parameters of the new model.
arXiv Detail & Related papers (2021-10-07T02:29:26Z) - Efficient Neural Architecture Search with Performance Prediction [0.0]
We use a neural architecture search to find the best network architecture for the task at hand.
Existing NAS algorithms generally evaluate the fitness of a new architecture by fully training from scratch.
An end-to-end offline performance predictor is proposed to accelerate the evaluation of sampled architectures.
arXiv Detail & Related papers (2021-08-04T05:44:16Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
We propose Multi-Scale Resource-Aware Neural Architecture Search (MS-RANAS)
We employ a one-shot architecture search approach in order to obtain a reduced search cost.
We achieve state-of-the-art results in terms of accuracy-speed trade-off.
arXiv Detail & Related papers (2020-09-29T11:56:01Z) - NAS-Navigator: Visual Steering for Explainable One-Shot Deep Neural
Network Synthesis [53.106414896248246]
We present a framework that allows analysts to effectively build the solution sub-graph space and guide the network search by injecting their domain knowledge.
Applying this technique in an iterative manner allows analysts to converge to the best performing neural network architecture for a given application.
arXiv Detail & Related papers (2020-09-28T01:48:45Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
We employ an auto-encoder to discover meaningful representations of neural architectures.
A graph convolutional neural network is introduced to predict the performance of architectures.
arXiv Detail & Related papers (2020-05-14T09:02:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.