A Spectral Condition for Feature Learning
- URL: http://arxiv.org/abs/2310.17813v2
- Date: Tue, 14 May 2024 00:10:33 GMT
- Title: A Spectral Condition for Feature Learning
- Authors: Greg Yang, James B. Simon, Jeremy Bernstein,
- Abstract summary: Key challenge is to scale training so that a network's internal representations evolve nontrivially at all widths.
We show that feature learning is achieved by scaling the spectral norm of weight and their updates.
- Score: 20.440553685976194
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The push to train ever larger neural networks has motivated the study of initialization and training at large network width. A key challenge is to scale training so that a network's internal representations evolve nontrivially at all widths, a process known as feature learning. Here, we show that feature learning is achieved by scaling the spectral norm of weight matrices and their updates like $\sqrt{\texttt{fan-out}/\texttt{fan-in}}$, in contrast to widely used but heuristic scalings based on Frobenius norm and entry size. Our spectral scaling analysis also leads to an elementary derivation of \emph{maximal update parametrization}. All in all, we aim to provide the reader with a solid conceptual understanding of feature learning in neural networks.
Related papers
- Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
This paper introduces the SANE approach to weight-space learning.
Our method extends the idea of hyper-representations towards sequential processing of subsets of neural network weights.
arXiv Detail & Related papers (2024-06-14T13:12:07Z) - LNPT: Label-free Network Pruning and Training [18.535687216213624]
Pruning before training enables the deployment of neural networks on smart devices.
We propose a novel learning framework, LNPT, which enables mature networks on the cloud to provide online guidance for network pruning and learning on smart devices with unlabeled data.
arXiv Detail & Related papers (2024-03-19T12:49:09Z) - Feature-Learning Networks Are Consistent Across Widths At Realistic
Scales [72.27228085606147]
We study the effect of width on the dynamics of feature-learning neural networks across a variety of architectures and datasets.
Early in training, wide neural networks trained on online data have not only identical loss curves but also agree in their point-wise test predictions throughout training.
We observe, however, that ensembles of narrower networks perform worse than a single wide network.
arXiv Detail & Related papers (2023-05-28T17:09:32Z) - Gradient Descent in Neural Networks as Sequential Learning in RKBS [63.011641517977644]
We construct an exact power-series representation of the neural network in a finite neighborhood of the initial weights.
We prove that, regardless of width, the training sequence produced by gradient descent can be exactly replicated by regularized sequential learning.
arXiv Detail & Related papers (2023-02-01T03:18:07Z) - Neural networks trained with SGD learn distributions of increasing
complexity [78.30235086565388]
We show that neural networks trained using gradient descent initially classify their inputs using lower-order input statistics.
We then exploit higher-order statistics only later during training.
We discuss the relation of DSB to other simplicity biases and consider its implications for the principle of universality in learning.
arXiv Detail & Related papers (2022-11-21T15:27:22Z) - How and what to learn:The modes of machine learning [7.085027463060304]
We propose a new approach, namely the weight pathway analysis (WPA), to study the mechanism of multilayer neural networks.
WPA shows that a neural network stores and utilizes information in a "holographic" way, that is, the network encodes all training samples in a coherent structure.
It is found that hidden-layer neurons self-organize into different classes in the later stages of the learning process.
arXiv Detail & Related papers (2022-02-28T14:39:06Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
We present Neural Interpreters, an architecture that factorizes inference in a self-attention network as a system of modules.
inputs to the model are routed through a sequence of functions in a way that is end-to-end learned.
We show that Neural Interpreters perform on par with the vision transformer using fewer parameters, while being transferrable to a new task in a sample efficient manner.
arXiv Detail & Related papers (2021-10-12T23:22:45Z) - Reasoning-Modulated Representations [85.08205744191078]
We study a common setting where our task is not purely opaque.
Our approach paves the way for a new class of data-efficient representation learning.
arXiv Detail & Related papers (2021-07-19T13:57:13Z) - Fast Adaptation with Linearized Neural Networks [35.43406281230279]
We study the inductive biases of linearizations of neural networks, which we show to be surprisingly good summaries of the full network functions.
Inspired by this finding, we propose a technique for embedding these inductive biases into Gaussian processes through a kernel designed from the Jacobian of the network.
In this setting, domain adaptation takes the form of interpretable posterior inference, with accompanying uncertainty estimation.
arXiv Detail & Related papers (2021-03-02T03:23:03Z) - The Surprising Simplicity of the Early-Time Learning Dynamics of Neural
Networks [43.860358308049044]
In work, we show that these common perceptions can be completely false in the early phase of learning.
We argue that this surprising simplicity can persist in networks with more layers with convolutional architecture.
arXiv Detail & Related papers (2020-06-25T17:42:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.